Monitoring abundance is essential for vecto'/> Geostatistical models using remotely‐sensed data predict savanna tsetse decline across the interface between protected and unprotected areas in Serengeti Tanzania
首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Geostatistical models using remotely‐sensed data predict savanna tsetse decline across the interface between protected and unprotected areas in Serengeti Tanzania
【2h】

Geostatistical models using remotely‐sensed data predict savanna tsetse decline across the interface between protected and unprotected areas in Serengeti Tanzania

机译:利用遥感数据的地统计学模型预测坦桑尼亚塞伦盖蒂受保护区和不受保护区之间界面的稀树草原采伐量下降

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="enumerated" style="list-style-type:decimal" id="jpe13091-list-0001">Monitoring abundance is essential for vector management, but it is often only possible in a fraction of managed areas. For vector control programmes, sampling to estimate abundance is usually carried out at a local‐scale (10s km2), while interventions often extend across 100s km2. Geostatistical models have been used to interpolate between points where data are available, but this still requires costly sampling across the entire area of interest. Instead, we used geostatistical models to predict local‐scale spatial variation in the abundance of tsetse—vectors of human and animal African trypanosomes—beyond the spatial extent of data to which models were fitted, in Serengeti, Tanzania.We sampled Glossina swynnertoni and Glossina pallidipes >10 km inside the Serengeti National Park (SNP) and along four transects extending into areas where humans and livestock live. We fitted geostatistical models to data >10 km inside the SNP to produce maps of abundance for the entire region, including unprotected areas.Inside the SNP, the mean number of G. pallidipes caught per trap per day in dense woodland was 166 (± 24 SE), compared to 3 (±1) in grassland. Glossina swynnertoni was more homogenous with respective means of 15 (±3) and 15 (±8). In general, models predicted a decline in abundance from protected to unprotected areas, related to anthropogenic changes to vegetation, which was confirmed during field survey. Synthesis and applications. Our approach allows vector control managers to identify sites predicted to have relatively high tsetse abundance, and therefore to design and implement improved surveillance strategies. In East and Southern Africa, trypanosomiasis is associated with wilderness areas. Our study identified pockets of vegetation which could sustain tsetse populations in farming areas outside the Serengeti National Park. Our method will assist countries in identifying, monitoring and, if necessary, controlling tsetse in trypanosomiasis foci. This has specific application to tsetse, but the approach could also be developed for vectors of other pathogens.
机译:class =“ enumerated” style =“ list-style-type:decimal” id =“ jpe13091-list-0001”> <!-list-behavior = enumerated prefix-word = mark-type = decimal max-label- size = 0-> 监视丰度对于媒介管理至关重要,但通常仅在一部分受管理区域才有可能。对于病媒控制程序,通常在局部规模(10s km 2 )上进行抽样以估计丰度,而干预措施通常会跨越100s km 2 。地统计模型已用于在可获得数据的点之间进行插值,但这仍然需要在整个感兴趣的区域进行昂贵的采样。取而代之的是,我们使用地统计学模型来预测采采蝇(人类和动物非洲锥虫的载体)丰富的采采蝇局部尺度的空间变化,这一点超出了坦桑尼亚塞伦盖蒂拟合模型的数据范围。
  • 我们在塞伦盖蒂国家公园(SNP)内以及沿延伸到人类和牲畜居住区域的四个样带采样了大于10公里的Glossina swynnertoni和Glossina pallidipes。我们在SNP内大于10 km的数据中拟合了地统计学模型,以生成整个区域(包括未保护区域)的丰度图。 在SNP内,每天在每个陷阱中捕获到的苍白G. Pallidipes的平均数量茂密的林地为166(±24 SE),而草原为3(±1)。 Swissnertontoni的均值分别为15(±3)和15(±8)。总体而言,模型预测,与植被的人为变化相关的保护区到非保护区的丰度将下降,这在实地调查中得到了证实。 合成和应用。我们的方法可使病媒控制管理者识别出采采蝇丰度相对较高的地点,从而设计和实施改进的监视策略。在东部和南部非洲,锥虫病与荒野有关。我们的研究确定了塞伦盖蒂国家公园以外的农业地区中能够维持采采蝇种群的植被。我们的方法将帮助各国识别,监测和必要时控制锥虫病疫情中的采采蝇。这在采采蝇中有特定的应用,但该方法也可用于其他病原体的载体。
  • 著录项

    相似文献

    • 外文文献
    • 中文文献
    • 专利
    代理获取

    客服邮箱:kefu@zhangqiaokeyan.com

    京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
    • 客服微信

    • 服务号