首页> 美国卫生研究院文献>Taylor Francis Open Select >Protein dynamics and motions in relation to their functions: several case studies and the underlying mechanisms
【2h】

Protein dynamics and motions in relation to their functions: several case studies and the underlying mechanisms

机译:蛋白质动力学和运动与其功能的关系:若干案例研究和潜在机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Proteins are dynamic entities in cellular solution with functions governed essentially by their dynamic personalities. We review several dynamics studies on serine protease proteinase K and HIV-1 gp120 envelope glycoprotein to demonstrate the importance of investigating the dynamic behaviors and molecular motions for a complete understanding of their structure–function relationships. Using computer simulations and essential dynamic (ED) analysis approaches, the dynamics data obtained revealed that: (i) proteinase K has highly flexible substrate-binding site, thus supporting the induced-fit or conformational selection mechanism of substrate binding; (ii) Ca2+ removal from proteinase K increases the global conformational flexibility, decreases the local flexibility of substrate-binding region, and does not influence the thermal motion of catalytic triad, thus explaining the experimentally determined decreased thermal stability, reduced substrate affinity, and almost unchanged catalytic activity upon Ca2+ removal; (iii) substrate binding affects the large concerted motions of proteinase K, and the resulting dynamic pocket can be connected to substrate binding, orientation, and product release; (iv) amino acid mutations 375 S/W and 423 I/P of HIV-1 gp120 have distinct effects on molecular motions of gp120, facilitating 375 S/W mutant to assume the CD4-bound conformation, while 423 I/P mutant to prefer for CD4-unliganded state. The mechanisms underlying protein dynamics and protein–ligand binding, including the concept of the free energy landscape (FEL) of the protein–solvent system, how the ruggedness and variability of FEL determine protein's dynamics, and how the three ligand-binding models, the lock-and-key, induced-fit, and conformational selection are rationalized based on the FEL theory are discussed in depth.
机译:蛋白质是细胞溶液中的动态实体,其功能基本上由其动态个性决定。我们回顾了对丝氨酸蛋白酶K和HIV-1 gp120包膜糖蛋白的动力学研究,以证明研究动力学行为和分子运动对于全面了解其结构-功能关系的重要性。使用计算机模拟和必要的动力学(ED)分析方法,获得的动力学数据表明:(i)蛋白酶K具有高度灵活的底物结合位点,从而支持底物结合的诱导适合或构象选择机制; (ii)从蛋白酶K去除Ca 2 + 增加了整体构象柔性,降低了底物结合区的局部柔性,并且不影响催化三联体的热运动,因此解释了实验确定的降低Ca 2 + 的热稳定性,降低的底物亲和力和几乎不变的催化活性; (iii)底物结合会影响蛋白酶K的大协同运动,并且所产生的动态口袋可与底物结合,方向和产物释放相关; (iv)HIV-1 gp120的375 S / W和423 I / P的氨基酸突变对gp120的分子运动具有明显的影响,有利于375 S / W突变体呈现CD4结合构象,而423 I / P突变体则具有CD4结合构象。首选CD4非配体状态。蛋白质动力学和蛋白质-配体结合的基本机制,包括蛋白质-溶剂系统的自由能态(FEL)概念,FEL的坚固性和可变性如何决定蛋白质的动力学,以及三种配体结合模型,深入讨论了基于FEL理论对锁键,诱导拟合和构象选择进行合理化的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号