NP-hard problems of finding maximum-size subsets'/> New algorithms for maximum disjoint paths based on tree-likeness
首页> 美国卫生研究院文献>Springer Open Choice >New algorithms for maximum disjoint paths based on tree-likeness
【2h】

New algorithms for maximum disjoint paths based on tree-likeness

机译:基于树状图的最大不相交路径的新算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the classical NP-hard problems of finding maximum-size subsets from given sets of k terminal pairs that can be routed via edge-disjoint paths (MaxEDP) or node-disjoint paths (MaxNDP) in a given graph. The approximability of MaxEDP/MaxNDP is currently not well understood; the best known lower bound is 2Ω(logn), assuming NPDTIME(nO(logn)). This constitutes a significant gap to the best known approximation upper bound of O(n) due to Chekuri et al. (Theory Comput 2:137–146, ), and closing this gap is currently one of the big open problems in approximation algorithms. In their seminal paper, Raghavan and Thompson (Combinatorica 7(4):365–374, ) introduce the technique of randomized rounding for LPs; their technique gives an O(1)-approximation when edges (or nodes) may be used by Ologn/loglogn paths. In this paper, we strengthen the fundamental results above. We provide new bounds formulated in terms of the feedback vertex set number r of a graph, which measures its vertex deletion distance to a forest. In particular, we obtain the following results: class="unordered" style="list-style-type:disc">For MaxEDP, we give an O(rlog(kr))-approximation algorithm. Up to a logarithmic factor, our result strengthens the best known ratio O(n) due to Chekuri et al., as rn.Further, we show how to route Ω(OPT) pairs with congestion bounded by O(log(kr)/loglog(kr)), strengthening the bound obtained by the classic approach of Raghavan and Thompson.For MaxNDP, we give an algorithm that gives the optimal answer in time  id="IEq12">(k+r)O(r)·n. This is a substantial improvement on the run time of  id="IEq13">2krO(r)·n, which can be obtained via an algorithm by Scheffler. We complement these positive results by proving that class="small-caps">MaxEDP is  id="IEq14">NP-hard even for  id="IEq15">r=1, and class="small-caps">MaxNDP is  id="IEq16">W[1]-hard when r is the parameter. This shows that neither problem is fixed-parameter tractable in r unless  id="IEq17">FPT=W[1] and that our approximability results are relevant even for very small constant values of r.
机译:我们研究了经典的 NP < / mi> -从给定的k个端子对集合中找到最大尺寸子集的难题,这些子集可以通过给定图中的边不相交路径(MaxEDP)或节点不相交路径(MaxNDP)进行布线。目前,人们对MaxEDP / MaxNDP的近似性还不太了解。最著名的下限是 2 Ω log n ,并假设 NP DTIME n O log n 。这与最著名的 O n 是由于Chekuri等人提出的。 (理论计算2:137–146,),缩小这种差距是当前近似算法中的一大难题。在Raghavan和Thompson(Combinatorica 7(4):365-374,)的开创性论文中,他们介绍了LP的随机舍入技术。他们的技术给出了 O 1 -边缘近似(或节点)可由 O log n / log log n 路径。上面的结果,我们提供了根据图的反馈顶点集号r制定的新范围,该度量测量了它到森林的顶点删除距离,尤其是,我们获得了以下结果: class =“ unordered” style =“ list-style-type:disc“> <!-list-behavior = unordered prefix-word = mark-type = disc max-label-size = 0-> 对于MaxEDP,我们给出一个 O r < / mi> log k r 近似算法。取决于对数因素,我们的结果增强了最广为人知的比率。 O n ,原因是Chekuri等人,如 r n 此外,我们显示如何路由 Ω OPT ∗ < / mo> 对,其拥塞受 O log k r / log log < mi> k r ,加强了Raghavan和Thompson的经典方法获得的界限。 对于MaxNDP,我们给出了一种算法,该算法可以及时给出最佳答案。 id =“ IEq12”> <数学xmlns:mml =“ http://www.w3.org/1998/Math/MathML” id =“ M24” overflow = “ scroll”> k + r O r · n < / span>。这是对 id =“ IEq13”> 2 k r O r · n ,可以通过Scheffler的算法获得。 证明 class =“ small-caps”> MaxEDP 是 id =“ IEq14”> NP -即使对于 id =“ IEq15”> r = 1 ,而 class =“ small-caps”> MaxNDP 是 id =“ IEq16”> W [ 1 ] -hard(当r为参数时)。这表明除非r id =“ IEq17”> FPT = W [ 1 ] ,即使我们的近似结果也很相关对于很小的r常数

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号