首页> 美国卫生研究院文献>Springer Open Choice >A spatially heterogeneous network-based metapopulation software model applied to the simulation of a pulmonary tuberculosis infection
【2h】

A spatially heterogeneous network-based metapopulation software model applied to the simulation of a pulmonary tuberculosis infection

机译:基于空间异质网络的人口迁移软件模型用于模拟肺结核感染

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tuberculosis (TB) is an ancient disease that, although curable, still accounts for over 1 million deaths worldwide. Shortening treatment time is an important area of research but is hampered by the lack of models that mimic the full range of human pathology. TB shows distinct localisations during different stages of infection, the reasons for which are poorly understood. Greater understanding of how heterogeneity within the human lung influences disease progression may hold the key to improving treatment efficiency and reducing treatment times.In this work, we present a novel in silico software model which uses a networked metapopulation incorporating both spatial heterogeneity and dissemination possibilities to simulate a TB infection over the whole lung and associated lymphatics. The entire population of bacteria and immune cells is split into a network of patches: members interact within patches and are able to move between them. Patches and edges of the lung network include their own environmental attributes which influence the dynamics of interactions between the members of the subpopulations of the patches and the translocation of members along edges.In this work, we detail the initial findings of a whole-organ model that incorporates distinct spatial heterogeneity features which are not present in standard differential equation approaches to tuberculosis modelling. We show that the inclusion of heterogeneity within the lung landscape when modelling TB disease progression has significant outcomes on the bacterial load present: a greater differential of oxygen, perfusion and ventilation between the apices and the basal regions of the lungs creates micro-environments at the apex that are more preferential for bacteria, due to increased oxygen availability and reduced immune activity, leading to a greater overall bacterial load present once latency is established.These findings suggest that further whole-organ modelling incorporating more sophisticated heterogeneities within the environment and complex lung topologies will provide more insight into the environments in which TB bacteria persist and thus help develop new treatments which are factored towards these environmental conditions.Electronic supplementary materialThe online version of this article (10.1007/s41109-018-0091-2) contains supplementary material, which is available to authorized users.
机译:结核病(TB)是一种古老的疾病,尽管可以治愈,但仍然导致全球超过100万人死亡。缩短治疗时间是一个重要的研究领域,但由于缺乏可模拟人类病理学的模型而受到阻碍。结核在感染的不同阶段显示出不同的定位,其原因尚不清楚。深入了解人肺内异质性如何影响疾病进展可能是提高治疗效率和减少治疗时间的关键。在这项工作中,我们提出了一种新颖的计算机软件模型,该模型使用了网络化的混合种群,将空间异质性和传播可能性结合在一起模拟整个肺部和相关淋巴管的TB感染。整个细菌和免疫细胞群被分成一个补丁网络:成员在补丁内相互作用并能够在它们之间移动。肺网络的斑块和边缘包括其自身的环境属性,这些属性会影响斑块亚群成员之间的相互作用以及成员沿边缘移位的动力学。在这项工作中,我们详细介绍了整个器官模型的初步发现结合了独特的空间异质性特征,这在结核病建模的标准微分方程方法中是不存在的。我们显示,当对结核病疾病进展进行建模时,在肺部景观中包含异质性对当前的细菌负荷具有显着的结果:顶点,肺基部区域之间的氧气,灌注和通气差异更大,从而在肺部形成微环境。由于增加了氧气的利用并降低了免疫活性,因此对细菌更优先的顶点,一旦建立了潜伏期,就会导致更大的总体细菌负荷。这些发现表明,进一步的全器官建模将环境和复杂的肺内的异质性纳入其中拓扑结构将提供对结核病细菌生存环境的更多见解,从而有助于开发针对这些环境条件的新疗法。电子补充材料本文的在线版本(10.1007 / s41109-018-0091-2)包含补充材料,授权用户可以使用s。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号