首页> 美国卫生研究院文献>PLoS Computational Biology >Metabolic network segmentation: A probabilistic graphical modeling approach to identify the sites and sequential order of metabolic regulation from non-targeted metabolomics data
【2h】

Metabolic network segmentation: A probabilistic graphical modeling approach to identify the sites and sequential order of metabolic regulation from non-targeted metabolomics data

机译:代谢网络细分:一种概率图形建模方法,可从非目标代谢组学数据中识别代谢调节的部位和顺序

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, the number of large-scale metabolomics studies on various cellular processes in different organisms has increased drastically. However, it remains a major challenge to perform a systematic identification of mechanistic regulatory events that mediate the observed changes in metabolite levels, due to complex interdependencies within metabolic networks. We present the metabolic network segmentation (MNS) algorithm, a probabilistic graphical modeling approach that enables genome-scale, automated prediction of regulated metabolic reactions from differential or serial metabolomics data. The algorithm sections the metabolic network into modules of metabolites with consistent changes. Metabolic reactions that connect different modules are the most likely sites of metabolic regulation. In contrast to most state-of-the-art methods, the MNS algorithm is independent of arbitrary pathway definitions, and its probabilistic nature facilitates assessments of noisy and incomplete measurements. With serial (i.e., time-resolved) data, the MNS algorithm also indicates the sequential order of metabolic regulation. We demonstrated the power and flexibility of the MNS algorithm with three, realistic case studies with bacterial and human cells. Thus, this approach enables the identification of mechanistic regulatory events from large-scale metabolomics data, and contributes to the understanding of metabolic processes and their interplay with cellular signaling and regulation processes.
机译:近年来,关于不同生物中各种细胞过程的大规模代谢组学研究的数量急剧增加。然而,由于代谢网络内复杂的相互依赖性,对介导观察到的代谢物水平变化的机械调节事件进行系统鉴定仍然是一项重大挑战。我们提出了代谢网络分段(MNS)算法,这是一种概率图形建模方法,能够根据差异或串行代谢组学数据自动进行基因组规模的受调节代谢反应的预测。该算法将代谢网络分成具有一致变化的代谢物模块。连接不同模块的代谢反应是代谢调节的最可能部位。与大多数最新方法相反,MNS算法独立于任意路径定义,并且其概率性质有助于评估嘈杂和不完整的测量。利用串行(即时间分辨)数据,MNS算法还可以指示代谢调节的顺序。我们通过对细菌和人类细胞进行的三个实际案例研究,证明了MNS算法的功能和灵活性。因此,这种方法能够从大规模代谢组学数据中识别机械调节事件,并有助于理解代谢过程及其与细胞信号传导和调节过程的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号