首页> 美国卫生研究院文献>PLoS Clinical Trials >Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach
【2h】

Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach

机译:用于骨组织工程的功能梯度支架的几何设计优化:一种力学生物学方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Functionally Graded Scaffolds (FGSs) are porous biomaterials where porosity changes in space with a specific gradient. In spite of their wide use in bone tissue engineering, possible models that relate the scaffold gradient to the mechanical and biological requirements for the regeneration of the bony tissue are currently missing. In this study we attempt to bridge the gap by developing a mechanobiology-based optimization algorithm aimed to determine the optimal graded porosity distribution in FGSs. The algorithm combines the parametric finite element model of a FGS, a computational mechano-regulation model and a numerical optimization routine. For assigned boundary and loading conditions, the algorithm builds iteratively different scaffold geometry configurations with different porosity distributions until the best microstructure geometry is reached, i.e. the geometry that allows the amount of bone formation to be maximized. We tested different porosity distribution laws, loading conditions and scaffold Young’s modulus values. For each combination of these variables, the explicit equation of the porosity distribution law–i.e the law that describes the pore dimensions in function of the spatial coordinates–was determined that allows the highest amounts of bone to be generated. The results show that the loading conditions affect significantly the optimal porosity distribution. For a pure compression loading, it was found that the pore dimensions are almost constant throughout the entire scaffold and using a FGS allows the formation of amounts of bone slightly larger than those obtainable with a homogeneous porosity scaffold. For a pure shear loading, instead, FGSs allow to significantly increase the bone formation compared to a homogeneous porosity scaffolds. Although experimental data is still necessary to properly relate the mechanical/biological environment to the scaffold microstructure, this model represents an important step towards optimizing geometry of functionally graded scaffolds based on mechanobiological criteria.
机译:功能梯度支架(FGSs)是多孔生物材料,其孔隙率在空间中以特定的梯度变化。尽管它们在骨组织工程中得到了广泛的应用,但目前尚缺乏将支架梯度与骨组织再生的机械和生物学要求相关联的可能模型。在这项研究中,我们试图通过开发基于力学生物学的优化算法来弥合差距,该算法旨在确定FGS的最佳梯度孔隙度分布。该算法结合了FGS的参数化有限元模型,计算力学调节模型和数值优化例程。对于指定的边界条件和加载条件,该算法迭代构建具有不同孔隙率分布的不同脚手架几何构型,直到达到最佳的微观结构几何体,即使骨形成量最大化的几何构型。我们测试了不同的孔隙率分布定律,加载条件和脚手架杨氏模量值。对于这些变量的每种组合,确定了孔隙度分布定律的显式方程,即根据空间坐标描述孔隙尺寸的定律,可以生成最大量的骨骼。结果表明,加载条件显着影响最佳孔隙率分布。对于纯压缩载荷,发现在整个支架上孔的尺寸几乎是恒定的,并且使用FGS允许形成的骨量略大于使用均质孔隙率支架可获得的骨量。相反,对于纯剪切载荷,与均质孔隙度支架相比,FGS可以显着增加骨骼的形成。尽管仍然需要实验数据才能将机械/生物环境与支架的微观结构正确关联,但是该模型代表了根据力学生物学标准优化功能梯度支架的几何结构的重要一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号