首页> 美国卫生研究院文献>PLoS Clinical Trials >A Test of Highly Optimized Tolerance Reveals Fragile Cell-Cycle Mechanisms Are Molecular Targets in Clinical Cancer Trials
【2h】

A Test of Highly Optimized Tolerance Reveals Fragile Cell-Cycle Mechanisms Are Molecular Targets in Clinical Cancer Trials

机译:高度优化的耐受性测试揭示了脆弱的细胞周期机制是临床癌症试验中的分子靶标

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Robustness, a long-recognized property of living systems, allows function in the face of uncertainty while fragility, i.e., extreme sensitivity, can potentially lead to catastrophic failure following seemingly innocuous perturbations. Carlson and Doyle hypothesized that highly-evolved networks, e.g., those involved in cell-cycle regulation, can be resistant to some perturbations while highly sensitive to others. The “robust yet fragile” duality of networks has been termed Highly Optimized Tolerance (HOT) and has been the basis of new lines of inquiry in computational and experimental biology. In this study, we tested the working hypothesis that cell-cycle control architectures obey the HOT paradigm. Three cell-cycle models were analyzed using monte-carlo sensitivity analysis. Overall state sensitivity coefficients, which quantify the robustness or fragility of a given mechanism, were calculated using a monte-carlo strategy with three different numerical techniques along with multiple parameter perturbation strategies to control for possible numerical and sampling artifacts. Approximately 65% of the mechanisms in the G1/S restriction point were responsible for 95% of the sensitivity, conversely, the G2-DNA damage checkpoint showed a much stronger dependence on a few mechanisms; ∼32% or 13 of 40 mechanisms accounted for 95% of the sensitivity. Our analysis predicted that CDC25 and cyclin E mechanisms were strongly implicated in G1/S malfunctions, while fragility in the G2/M checkpoint was predicted to be associated with the regulation of the cyclin B-CDK1 complex. Analysis of a third model containing both G1/S and G2/M checkpoint logic, predicted in addition to mechanisms already mentioned, that translation and programmed proteolysis were also key fragile subsystems. Comparison of the predicted fragile mechanisms with literature and current preclinical and clinical trials suggested a strong correlation between efficacy and fragility. Thus, when taken together, these results support the working hypothesis that cell-cycle control architectures are HOT networks and establish the mathematical estimation and subsequent therapeutic exploitation of fragile mechanisms as a novel strategy for anti-cancer lead generation.
机译:坚固性是生命系统的一种公认特性,它可以在不确定性的情况下发挥作用,而脆弱性(即极端敏感性)则可能在看似无害的扰动下导致灾难性故障。卡尔森(Carlson)和道尔(Doyle)假设,高度发展的网络(例如参与细胞周期调控的网络)可以抵抗某些干扰,而对其他干扰高度敏感。网络的“健壮而脆弱”对偶性被称为高度优化公差(HOT),并且已成为计算生物学和实验生物学中新的研究领域的基础。在这项研究中,我们测试了细胞周期控制架构遵循HOT范式的有效假设。使用蒙特卡洛灵敏度分析法分析了三个细胞周期模型。使用带有三种不同数值技术的蒙特卡洛策略以及用于控制可能的数值和采样伪像的多参数摄动策略,使用蒙特卡洛策略来计算量化给定机制的鲁棒性或脆弱性的总体状态灵敏度系数。 G1 / S限制点中约有65%的机制负责95%的敏感性,相反,G2-DNA损伤检查点对某些机制的依赖性强得多。 〜32%或40种机制中的13种占灵敏度的95%。我们的分析预测CDC25和细胞周期蛋白E机制与G1 / S故障密切相关,而G2 / M检查点的脆弱性则与细胞周期蛋白B-CDK1复合物的调节有关。除了已经提到的机制之外,还预测了同时包含G1 / S和G2 / M检查点逻辑的第三个模型的分析,即翻译和程序化蛋白水解也是关键的易碎子系统。将预测的脆弱机制与文献以及当前的临床前和临床试验进行比较表明,功效与脆弱性之间存在很强的相关性。因此,综合起来,这些结果支持了细胞周期控制架构是HOT网络的可行假设,并建立了数学估计和对脆弱机制的后续治疗方法,将其作为抗癌铅生成的新策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号