首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Cellular and Network Mechanisms for Temporal Signal Propagation in a Cortical Network Model
【2h】

Cellular and Network Mechanisms for Temporal Signal Propagation in a Cortical Network Model

机译:皮质网络模型中时间信号传播的蜂窝和网络机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The mechanisms underlying an effective propagation of high intensity information over a background of irregular firing and response latency in cognitive processes remain unclear. Here we propose a SSCCPI circuit to address this issue. We hypothesize that when a high-intensity thalamic input triggers synchronous spike events (SSEs), dense spikes are scattered to many receiving neurons within a cortical column in layer IV, many sparse spike trains are propagated in parallel along minicolumns at a substantially high speed and finally integrated into an output spike train toward or in layer Va. We derive the sufficient conditions for an effective (fast, reliable, and precise) SSCCPI circuit: (i) SSEs are asynchronous (near synchronous); (ii) cortical columns prevent both repeatedly triggering SSEs and incorrectly synaptic connections between adjacent columns; and (iii) the propagator in interneurons is temporally complete fidelity and reliable. We encode the membrane potential responses to stimuli using the non-linear autoregressive integrated process derived by applying Newton's second law to stochastic resilience systems. We introduce a multithreshold decoder to correct encoding errors. Evidence supporting an effective SSCCPI circuit includes that for the condition, (i) time delay enhances SSEs, suggesting that response latency induces SSEs in high-intensity stimuli; irregular firing causes asynchronous SSEs; asynchronous SSEs relate to healthy neurons; and rigorous SSEs relate to brain disorders. For the condition (ii) neurons within a given minicolumn are stereotypically interconnected in the vertical dimension, which prevents repeated triggering SSEs and ensures signal parallel propagation; columnar segregation avoids incorrect synaptic connections between adjacent columns; and signal propagation across layers overwhelmingly prefers columnar direction. For the condition (iii), accumulating experimental evidence supports temporal transfer precision with millisecond fidelity and reliability in interneurons; homeostasis supports a stable fixed-point encoder by regulating changes to synaptic size, synaptic strength, and ion channel function in the membrane; together all-or-none modulation, active backpropagation, additive effects of graded potentials, and response variability functionally support the multithreshold decoder; our simulations demonstrate that the encoder-decoder is temporally complete fidelity and reliable in special intervals contained within the stable fixed-point range. Hence, the SSCCPI circuit provides a possible mechanism of effective signal propagation in cortical networks.
机译:尚不清楚在认知过程中不规则激发和反应潜伏期的背景下高强度信息有效传播的基础机制。在这里,我们提出了一个SSCCPI电路来解决这个问题。我们假设,当高强度丘脑输入触发同步尖峰事件(SSE)时,密集的尖峰会散布到IV层皮质列中的许多接收神经元上,许多稀疏的尖峰列会以极高的速度沿微型列并行传播,并且最终,将其集成到朝向或位于Va层的输出峰值串中。我们得出了有效(快速,可靠和精确)的SSCCPI电路的充分条件:(i)SSE是异步的(接近同步); (ii)皮质柱既防止重复触发SSE,又防止相邻柱之间的突触连接不正确; (iii)中间神经元中的传播子在时间上是完全保真且可靠的。我们通过应用牛顿第二定律应用于随机弹性系统得出的非线性自回归积分过程对膜对刺激的电位响应进行编码。我们引入了多阈值解码器来纠正编码错误。支持有效SSCCPI电路的证据包括:(i)时间延迟会增强SSE,这表明响应潜伏期会在高强度刺激中诱发SSE。不规则点火会导致异步SSE;异步SSE与健康的神经元有关;严格的SSE与脑部疾病有关。对于条件(ii),给定迷你列中的神经元在垂直方向上是定型互连的,这可以防止重复触发SSE,并确保信号并行传播;柱状分离可避免相邻柱之间的错误突触连接;跨层的信号传播绝大多数都倾向于柱状方向。对于条件(iii),积累的实验证据支持中间神经元具有毫秒保真度和可靠性的时间传递精度;稳态通过调节膜中突触大小,突触强度和离子通道功能的变化来支持稳定的定点编码器;全或无调制,主动反向传播,分级电势的累加效应以及响应可变性一起在功能上支持多阈值解码器;我们的仿真表明,编解码器在稳定的定点范围内的特定间隔内在时间上完全保真且可靠。因此,SSCCPI电路提供了在皮质网络中有效信号传播的可能机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号