首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >The Energy Homeostasis Principle: Neuronal Energy Regulation Drives Local Network Dynamics Generating Behavior
【2h】

The Energy Homeostasis Principle: Neuronal Energy Regulation Drives Local Network Dynamics Generating Behavior

机译:能量稳态原理:神经元能量调节驱动本地网络动态生成行为

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A major goal of neuroscience is understanding how neurons arrange themselves into neural networks that result in behavior. Most theoretical and experimental efforts have focused on a top-down approach which seeks to identify neuronal correlates of behaviors. This has been accomplished by effectively mapping specific behaviors to distinct neural patterns, or by creating computational models that produce a desired behavioral outcome. Nonetheless, these approaches have only implicitly considered the fact that neural tissue, like any other physical system, is subjected to several restrictions and boundaries of operations. Here, we proposed a new, bottom-up conceptual paradigm: The Energy Homeostasis Principle, where the balance between energy income, expenditure, and availability are the key parameters in determining the dynamics of neuronal phenomena found from molecular to behavioral levels. Neurons display high energy consumption relative to other cells, with metabolic consumption of the brain representing 20% of the whole-body oxygen uptake, contrasting with this organ representing only 2% of the body weight. Also, neurons have specialized surrounding tissue providing the necessary energy which, in the case of the brain, is provided by astrocytes. Moreover, and unlike other cell types with high energy demands such as muscle cells, neurons have strict aerobic metabolism. These facts indicate that neurons are highly sensitive to energy limitations, with Gibb's free energy dictating the direction of all cellular metabolic processes. From this activity, the largest energy, by far, is expended by action potentials and post-synaptic potentials; therefore, plasticity can be reinterpreted in terms of their energy context. Consequently, neurons, through their synapses, impose energy demands over post-synaptic neurons in a close loop-manner, modulating the dynamics of local circuits. Subsequently, the energy dynamics end up impacting the homeostatic mechanisms of neuronal networks. Furthermore, local energy management also emerges as a neural population property, where most of the energy expenses are triggered by sensory or other modulatory inputs. Local energy management in neurons may be sufficient to explain the emergence of behavior, enabling the assessment of which properties arise in neural circuits and how. Essentially, the proposal of the Energy Homeostasis Principle is also readily testable for simple neuronal networks.
机译:神经科学的主要目标是了解神经元如何将自己安排到导致行为的神经网络中。大多数理论上和实验上的努力都集中在自顶向下的方法上,该方法试图识别行为的神经元相关性。这可以通过有效地将特定行为映射到不同的神经模式,或者通过创建产生所需行为结果的计算模型来实现。但是,这些方法仅隐含地考虑到神经组织像任何其他物理系统一样受到操作的一些限制和限制的事实。在这里,我们提出了一种新的,自下而上的概念范式:能量稳态原理,其中能量收入,支出和可用性之间的平衡是确定从分子水平到行为水平的神经元现象动力学的关键参数。神经元相对于其他细胞显示出高能量消耗,大脑的代谢消耗占全身氧气摄入量的20%,而该器官仅占体重的2%。同样,神经元具有专门的周围组织,提供了必要的能量,在大脑的情况下,是由星形胶质细胞提供的。而且,与其他具有高能量需求的细胞类型(如肌肉细胞)不同,神经元具有严格的有氧代谢。这些事实表明,神经元对能量限制高度敏感,吉布的自由能决定了所有细胞代谢过程的方向。到目前为止,最大的能量是通过动作电位和突触后电位消耗的。因此,可塑性可以根据其能量环境进行重新解释。因此,神经元通过其突触以闭环方式对突触后神经元施加能量需求,从而调节局部回路的动力学。随后,能量动力学最终影响神经元网络的稳态机制。此外,局部能量管理也作为一种神经种群特性而出现,其中大部分能量消耗是由感觉或其他调节输入触发的。神经元中的局部能量管理可能足以解释行为的出现,从而能够评估神经回路中哪些属性以及如何发生。本质上,能量稳态原理的建议对于简单的神经元网络也很容易测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号