class='head no_bottom_margin' id='sec1title'>Int'/> Structure of the DNA-Bound Spacer Capture Complex of a Type II CRISPR-Cas System
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Structure of the DNA-Bound Spacer Capture Complex of a Type II CRISPR-Cas System
【2h】

Structure of the DNA-Bound Spacer Capture Complex of a Type II CRISPR-Cas System

机译:II型CRISPR-Cas系统的结合DNA的间隔子捕获复合物的结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionCRISPR-Cas is a set of microbial adaptive immune systems characterized by the insertion of short viral- or plasmid-derived DNA fragments called spacers into the CRISPR regions in the microbe’s chromosome. These spacers serve as an immunological memory and protect the host via Cas proteins.Fingerprinting invading DNA by inserting fragments as spacers into the CRISPR region is called adaptation (). Spacers serve as templates for generation of CRISPR RNA (crRNA) guides for the interference machinery encoded by Cas proteins. On the basis of the composition of ribonucleoprotein complexes that constitute the interference machinery, CRISPR-Cas systems are divided () into class 1 with multi-subunit interference complexes exemplified by Cascade () and class 2 with single-protein multi-domain effectors, such as Cas9 (, ) or Cas12 ().In a broad sense, the adaptation stage consists of the spacer capture step, where a prespacer is taken from the invading DNA, and the integration step, where a spacer is inserted into the CRISPR array. The prespacer acquired during the capture may require a separate step for end processing or may be processed directly in the integration complex (, , , , ). Despite the differences between different CRISPR-Cas systems, spacer integration is likely to be achieved in relatively similar ways, due to the fact that it is carried out by the highly conserved Cas1 and Cas2 proteins (, ).In a prototypical type I-E CRISPR-Cas system from E. coli, Cas1 and Cas2 form a complex that promotes spacer integration into the CRISPR array (, ). In this complex, a Cas2 dimer is sandwiched by two Cas1 dimers in a butterfly-like arrangement to provide a platform for the binding of a prespacer in the form of a 23-bp duplex with 5-nt, splayed or 3′ protruding ends (href="#bib35" rid="bib35" class=" bibr popnode">Nuñez et al., 2015b, href="#bib45" rid="bib45" class=" bibr popnode">Wang et al., 2015). A prespacer contains a protospacer (a sequence matching the spacer in the CRISPR array) and a PAM (protospacer adjacent motif) sequence, the latter being needed for the discrimination between self and non-self (href="#bib35" rid="bib35" class=" bibr popnode">Nuñez et al., 2015b, href="#bib45" rid="bib45" class=" bibr popnode">Wang et al., 2015). One of the Cas1 subunits recognizes the PAM sequence, which is subsequently removed by an as yet unknown mechanism, and a protospacer sequence is integrated into the CRISPR array (href="#bib35" rid="bib35" class=" bibr popnode">Nuñez et al., 2015b, href="#bib45" rid="bib45" class=" bibr popnode">Wang et al., 2015). The protospacer integration reaction proceeds by nucleophilic attack of both sides of the first repeat of the CRISPR region by the free 3′-hydroxyl ends of the protospacer. This reaction is carried out by the Cas1-Cas2 complex, with Cas1 playing the catalytic role in the integration reaction. For the type I-E system, integration specificity is enhanced by the integration host factor (IHF) binding to the leader sequence of the CRISPR region to impose a specific DNA structure that is recognized by the Cas1-Cas2 complex (href="#bib36" rid="bib36" class=" bibr popnode">Nuñez et al., 2016). The resulting product is repaired by host factors, and each integration event is accompanied by the duplication of the leader-proximal repeat sequence (href="#bib2" rid="bib2" class=" bibr popnode">Amitai and Sorek, 2016, href="#bib43" rid="bib43" class=" bibr popnode">Sternberg et al., 2016).The universal conservation of the Cas1 and Cas2 proteins implies that the spacer integration mechanism may share similarities across different CRISPR-Cas systems. However, the type II-A CRISPR-Cas systems of Streptococcus thermophilus and Streptococcus pyogenes encode four Cas proteins: Cas9; Cas1; Cas2; and Csn2 (href="/pmc/articles/PMC6620040/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1A), all of which are essential for adaptation in vivo (href="#bib14" rid="bib14" class=" bibr popnode">Heler et al., 2015, href="#bib46" rid="bib46" class=" bibr popnode">Wei et al., 2015). However, although Cas9 nucleolytic activity is not required for protospacer integration, mutations of amino acid residues in Cas9, which are known to be involved in PAM recognition, lead to PAM-independent spacer acquisition, confirming that Cas9 is required for insertion of spacers with a correct PAM sequence (href="#bib14" rid="bib14" class=" bibr popnode">Heler et al., 2015, href="#bib46" rid="bib46" class=" bibr popnode">Wei et al., 2015). Although Csn2 is indispensable in the adaptation step, its function remains obscure. Previous studies revealed that the Csn2 protein is tetrameric and forms a toroidal structure (href="#bib3" rid="bib3" class=" bibr popnode">Arslan et al., 2013, href="#bib10" rid="bib10" class=" bibr popnode">Ellinger et al., 2012, href="#bib25" rid="bib25" class=" bibr popnode">Lee et al., 2012, href="#bib32" rid="bib32" class=" bibr popnode">Nam et al., 2011). Although no biochemical activity has been detected for Csn2, it has been shown to bind to double-stranded DNA ends (href="#bib10" rid="bib10" class=" bibr popnode">Ellinger et al., 2012, href="#bib25" rid="bib25" class=" bibr popnode">Lee et al., 2012, href="#bib32" rid="bib32" class=" bibr popnode">Nam et al., 2011). Recent work has shown that all four Cas proteins in this system interact with one another (href="#bib19" rid="bib19" class=" bibr popnode">Ka et al., 2018).href="/pmc/articles/PMC6620040/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6620040_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC6620040/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC6620040/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1Cas1, Cas2, Csn2, and Cas9 Proteins of CRISPR3-Cas System from S. thermophilus DGCC7710 Form a Stable Complex(A) Schematic representation of the CRISPR3-Cas locus.(B) CRISPR3-Cas system deletion mutants used to screen the complex assembly.(C) Results from purification of the complexes using the deletion mutants of the CRISPR3-Cas system depicted in (B). The CRISPR3-Cas system variants were co-expressed with Cas1 protein bearing a StrepII tag. The complexes were purified using StrepTrap column followed by size-exclusion chromatography and analyzed on SDS-PAGE. Cas1 and Cas2 form the core complex. Csn2 binds to Cas1-Cas2 complex (or vice versa), allowing binding of Cas9.(D) Cas1, Cas2, Csn2, and Cas9 proteins co-purify in the absence of crRNA and tracrRNA.(E) SDS-PAGE of the purified complex used for structural analysis.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介 CRISPR-Cas是一组以短病毒插入为特征的微生物适应性免疫系统-或称为间隔子的质粒衍生的DNA片段进入微生物染色体的CRISPR区域。这些间隔子可作为免疫记忆并通过Cas蛋白保护宿主。通过将片段作为间隔子插入CRISPR区域,将入侵的DNA指纹识别为适应性()。间隔物用作生成CRISPR RNA(crRNA)指南的模板,用于由Cas蛋白编码的干扰机制。根据构成干扰机制的核糖核蛋白复合物的组成,将CRISPR-Cas系统分为(1)类(以Cascade为例的多亚基干扰复合物)和2类具有单蛋白多域效应子的复合物,例如从广义上讲,适应阶段包括间隔子捕获步骤和整合步骤,在间隔子捕获步骤中,从入侵的DNA中提取一个预间隔子;在整合步骤中,将间隔子插入到CRISPR阵列中。在捕获过程中获取的预分隔符可能需要单独的步骤进行最终处理,也可以直接在集成复合体(````,)中进行处理。尽管不同的CRISPR-Cas系统之间存在差异,但间隔区整合仍可能以相对相似的方式实现,因为它是由高度保守的Cas1和Cas2蛋白(,)进行的。大肠杆菌的Cas系统,Cas1和Cas2形成复合物,可促进间隔子整合到CRISPR阵列中()。在该复合物中,Cas2二聚体被两个Cas1二聚体夹在中间,呈蝴蝶状排列,从而为以23 bp双链体形式与5 nt,八角或3'突出末端的预间隔子结合提供了平台( href="#bib35" rid="bib35" class=" bibr popnode">努涅斯等人,2015b ,href =“#bib45” rid =“ bib45” class =“ bibr popnode” > Wang等人,2015 )。预间隔子包含一个原型间隔子(一个与CRISPR阵列中的间隔子匹配的序列)和一个PAM(原型间隔子相邻基序)序列,后者是区分自身和非自身所必需的(href =“#bib35” rid = “ bib35” class =“ bibr popnode”>努涅斯等人,2015b ,href="#bib45" rid="bib45" class=" bibr popnode"> Wang等人,2015 )。 Cas1的一个亚基识别PAM序列,随后通过未知机制将其删除,然后将一个原型间隔子序列整合到CRISPR阵列中(href =“#bib35” rid =“ bib35” class =“ bibr popnode “>Nuñez等人,2015b ,href="#bib45" rid="bib45" class=" bibr popnode"> Wang等人,2015 )。 Protospacer整合反应是通过Protospacer的3'-羟基末端对CRISPR区域的第一个重复序列的两侧进行亲核攻击而进行的。该反应由Cas1-Cas2配合物进行,Cas1在整合反应中起催化作用。对于IE型系统,通过整合宿主因子(IHF)与CRISPR区域的前导序列结合以施加可被Cas1-Cas2复合体识别的特定DNA结构(href =“#bib36 “ rid =” bib36“ class =” bibr popnode“>努涅斯等人,2016 )。最终产品会受到宿主因素的修复,并且每个整合事件都伴随着前导者附近重复序列的重复(href="#bib2" rid="bib2" class=" bibr popnode"> Amitai和Sorek, 2016 ,href="#bib43" rid="bib43" class=" bibr popnode"> Sternberg等人,2016 )。Cas1和Cas2蛋白的普遍保守性意味着间隔整合机制可能在不同的CRISPR-Cas系统之间共享相似性。然而,嗜热链球菌和化脓性链球菌的II-A型CRISPR-Cas系统编码四种Cas蛋白:Cas9; Cas9; Cas9; Cas9。 Cas1; Cas2;和Csn2(href =“ / pmc / articles / PMC6620040 / figure / fig1 /” target =“ figure” class =“ fig-table-link figpopup” rid-figpopup =“ fig1” rid-ob =“ ob-fig1 “ co-legend-rid =” lgnd_fig1“>图1 A),所有这些对于在vivo中进行适应都是必不可少的(href="#bib14" rid="bib14" class=" bibr popnode"> Heler等人,2015 ,href="#bib46" rid="bib46" class=" bibr popnode"> Wei等人,2015 )。然而,尽管原间隔子整合并不需要Cas9的核酸分解活性,但已知参与PAM识别的Cas9中的氨基酸残基突变会导致独立于PAM的间隔子获得,确认需要插入Cas9才能插入具有正确PAM序列的间隔区(href="#bib14" rid="bib14" class=" bibr popnode"> Heler等人,2015 ,href =“#bib46” rid =“ bib46” class =“ bibr popnode”> Wei等人,2015 )。尽管Csn2在适应步骤中必不可少,但其功能仍然不清楚。先前的研究表明Csn2蛋白是四聚体并形成环形结构(href="#bib3" rid="bib3" class=" bibr popnode"> Arslan等,2013 ,href = “#bib10” rid =“ bib10” class =“ bibr popnode”>埃林格等人,2012 ,href="#bib25" rid="bib25" class=" bibr popnode">李等人。,2012 ,href="#bib32" rid="bib32" class=" bibr popnode"> Nam等人,2011 )。尽管未检测到Csn2的生化活性,但已证明它与双链DNA末端结合(href="#bib10" rid="bib10" class=" bibr popnode"> Ellinger等,2012 < / a>,href="#bib25" rid="bib25" class=" bibr popnode">李等人,2012 ,href =“#bib32” rid =“ bib32” class = “ bibr popnode”> Nam等,2011 )。最近的研究表明,该系统中的所有四种Cas蛋白彼此相互作用(href="#bib19" rid="bib19" class=" bibr popnode"> Kaet al。,2018 )。 !-fig ft0-> <!-fig模式=文章f1-> href =“ / pmc / articles / PMC6620040 / figure / fig1 /” target =“ figure” rid-figpopup =“ fig1” rid -ob =“ ob-fig1”> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ inline_block ts_canvas” href =“ / core / lw / 2.0 / html /tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6620040_gr1.jpg“ target =” tileshopwindow“> target =” object“ href =” / pmc / articles / PMC6620040 / figure / fig1 /?report = objectonly“>在单独的窗口中打开 class =” figpopup“ href =” / pmc / articles / PMC6620040 / figure / fig1 /“ target =”图1 <!-标题a7->来自S的CRISPR3-Cas系统的Cas1,Cas2,Csn2和Cas9蛋白嗜热菌DGCC7710形成稳定的复合体(A)CRISPR3-Cas基因座的示意图。(B)CRISPR3-Cas系统m个用于筛选复合物装配体的缺失突变体。(C)使用(B)中描述的CRISPR3-Cas系统的缺失突变体纯化复合物的结果。 CRISPR3-Cas系统变体与带有StrepII标签的Cas1蛋白共表达。使用StrepTrap柱,然后进行尺寸排阻色谱法纯化复合物,并在SDS-PAGE上进行分析。 Cas1和Cas2构成核心复合体。 Csn2与Cas1-Cas2复合物结合(反之亦然),从而允许Cas9结合。(D)在不存在crRNA和tracrRNA的情况下共纯化Cas1,Cas2,Csn2和Cas9蛋白。(E)纯化的SDS-PAGE用于结构分析的复合体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号