首页> 美国卫生研究院文献>Elsevier Sponsored Documents >High-throughput field phenotyping using hyperspectral reflectance and partial least squares regression (PLSR) reveals genetic modifications to photosynthetic capacity
【2h】

High-throughput field phenotyping using hyperspectral reflectance and partial least squares regression (PLSR) reveals genetic modifications to photosynthetic capacity

机译:使用高光谱反射和偏最小二乘回归(PLSR)的高通量表型揭示了对光合能力的遗传修饰

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spectroscopy is becoming an increasingly powerful tool to alleviate the challenges of traditional measurements of key plant traits at the leaf, canopy, and ecosystem scales. Spectroscopic methods often rely on statistical approaches to reduce data redundancy and enhance useful prediction of physiological traits. Given the mechanistic uncertainty of spectroscopic techniques, genetic modification of plant biochemical pathways may affect reflectance spectra causing predictive models to lose power. The objectives of this research were to assess over two separate years, whether a predictive model can represent natural and imposed variation in leaf photosynthetic potential for different crop cultivars and genetically modified plants, to assess the interannual capabilities of a partial least square regression (PLSR) model, and to determine whether leaf N is a dominant driver of photosynthesis in PLSR models. In 2016, a PLSR analysis of reflectance spectra coupled with gas exchange data was used to build predictive models for photosynthetic parameters including maximum carboxylation rate of Rubisco (Vc,max), maximum electron transport rate (Jmax) and percentage leaf nitrogen ([N]). The model was developed for wild type and genetically modified plants that represent a wide range of photosynthetic capacities. Results show that hyperspectral reflectance accurately predicted Vc,max, Jmax and [N] for all plants measured in 2016. Applying these PLSR models to plants grown in 2017 resulted in a strong predictive ability relative to gas exchange measurements for Vc,max, but not for Jmax, and not for genotypes unique to 2017. Building a new model including data collected in 2017 resulted in more robust predictions, with R2 increases of 17% for Vc,max. and 13% Jmax. Plants generally have a positive correlation between leaf nitrogen and photosynthesis, however, tobacco with reduced Rubisco (SSuD) had significantly higher [N] despite much lower Vc,max. The PLSR model was able to accurately predict both lower Vc,max and higher leaf [N] for this genotype suggesting that the spectral based estimates of Vc,max and leaf nitrogen [N] are independent. These results suggest that the PLSR model can be applied across years, but only to genotypes used to build the model and that the actual mechanism measured with the PLSR technique is not directly related to leaf [N]. The success of the leaf-scale analysis suggests that similar approaches may be successful at the canopy and ecosystem scales but to use these methods across years and between genotypes at any scale, application of accurately populated physical based models based on radiative transfer principles may be required.
机译:光谱学正成为一种日益强大的工具,可以缓解传统测量方法在叶片,冠层和生态系统规模上对关键植物性状的挑战。光谱方法通常依靠统计方法来减少数据冗余并增强生理特征的有用预测。考虑到光谱技术的机械不确定性,植物生化途径的遗传修饰可能会影响反射光谱,从而导致预测模型失去功效。这项研究的目的是评估两个单独的年份,该预测模型是否可以代表不同作物品种和转基因植物的叶片光合潜力的自然变化和施加的变化,以评估偏最小二乘回归(PLSR)的年际能力。并确定叶片N是否是PLSR模型中光合作用的主要驱动因素。 2016年,使用反射光谱的PLSR分析结合气体交换数据来建立光合作用参数的预测模型,包括Rubisco的最大羧化速率(Vc,max),最大电子传输速率(Jmax)和叶氮百分比([N] )。该模型是为具有广泛光合作用能力的野生型和转基因植物开发的。结果表明,高光谱反射率可以准确预测2016年测量的所有植物的Vc,max,Jmax和[N]。将这些PLSR模型应用于2017年种植的植物,相对于Vc,max的气体交换测量结果具有很强的预测能力,但不能对于Jmax,而不是对于2017年独有的基因型。构建包含2017年收集的数据的新模型可得出更可靠的预测,其中Vc,max的R 2 增加17%。和13%J max 。植物通常在叶片氮和光合作用之间具有正相关,但是,尽管 V c ,max大大降低,但Rubisco降低的烟草(SSuD)的[N]明显更高。 PLSR模型能够准确预测该基因型的 V c max 和较高的叶片[N],这表明基于光谱的估计 V c max 和叶氮[N]的关系是独立的。这些结果表明,PLSR模型可以应用多年,但仅适用于用于构建模型的基因型,并且使用PLSR技术测得的实际机制与叶片没有直接关系[N]。叶尺度分析的成功表明,类似的方法可能在冠层和生态系统尺度上是成功的,但是要在多年内以及在任何规模的基因型之间使用这些方法,可能需要应用基于辐射转移原理的精确填充的基于物理的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号