首页> 美国卫生研究院文献>Interface Focus >Petiolate wings: effects on the leading-edge vortex in flapping flight
【2h】

Petiolate wings: effects on the leading-edge vortex in flapping flight

机译:叶柄翅膀:扑翼飞行中对前沿涡旋的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The wings of many insect species including crane flies and damselflies are petiolate (on stalks), with the wing planform beginning some distance away from the wing hinge, rather than at the hinge. The aerodynamic impact of flapping petiolate wings is relatively unknown, particularly on the formation of the lift-augmenting leading-edge vortex (LEV): a key flow structure exploited by many insects, birds and bats to enhance their lift coefficient. We investigated the aerodynamic implications of petiolation P using particle image velocimetry flow field measurements on an array of rectangular wings of aspect ratio 3 and petiolation values of P = 1–3. The wings were driven using a mechanical device, the ‘Flapperatus’, to produce highly repeatable insect-like kinematics. The wings maintained a constant Reynolds number of 1400 and dimensionless stroke amplitude Λ* (number of chords traversed by the wingtip) of 6.5 across all test cases. Our results showed that for more petiolate wings the LEV is generally larger, stronger in circulation, and covers a greater area of the wing surface, particularly at the mid-span and inboard locations early in the wing stroke cycle. In each case, the LEV was initially arch-like in form with its outboard end terminating in a focus-sink on the wing surface, before transitioning to become continuous with the tip vortex thereafter. In the second half of the wing stroke, more petiolate wings exhibit a more detached LEV, with detachment initiating at approximately 70% and 50% span for P = 1 and 3, respectively. As a consequence, lift coefficients based on the LEV are higher in the first half of the wing stroke for petiolate wings, but more comparable in the second half. Time-averaged LEV lift coefficients show a general rise with petiolation over the range tested.
机译:许多昆虫的机翼,包括鹤蝇和豆娘,都是有叶柄的(在茎上),机翼平面从机翼铰链开始而不是在铰链处开始一定距离。叶柄拍打翅膀的空气动力学影响相对未知,尤其是在升力增强前缘涡流(LEV)的形成上:这是许多昆虫,鸟类和蝙蝠利用其增强升力系数的关键流动结构。我们使用纵横比为3且矩形化值P = 1-3的矩形机翼阵列上的粒子图像测速流场测量,研究了空白化P的空气动力学影响。机翼由机械装置“ Flapperatus”驱动,以产生高度可重复的类似于昆虫的运动学。在所有测试案例中,机翼均保持1400的恒定雷诺数和无量纲的冲程振幅Λ*(翼尖所经过的弦数)。我们的结果表明,对于有叶柄的机翼,LEV通常更大,循环更强,并且覆盖机翼表面的面积更大,尤其是在机翼冲程周期的中跨和内侧位置。在每种情况下,LEV最初都是弓形的,其外端终止于机翼表面上的聚焦槽,此后过渡为与尖端涡流连续。在机翼冲程的后半段,更多的叶柄机翼展现出更独立的LEV,对于P = 1和3,分别以大约70%和50%的跨度开始分离。因此,叶柄机翼的上半部基于LEV的升力系数较高,而下半部则更为可比。时间平均的LEV升力系数在测试范围内随叶柄的升高而总体升高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号