首页> 美国卫生研究院文献>ACS Omega >Effect of Co-Adsorbate and Hole Transporting Layeron the Photoinduced Charge Separation at the TiO2–PhthalocyanineInterface
【2h】

Effect of Co-Adsorbate and Hole Transporting Layeron the Photoinduced Charge Separation at the TiO2–PhthalocyanineInterface

机译:共吸附物和空穴传输层的作用酞菁酞菁中光致电荷分离的研究接口

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding the primary processes of charge separation (CS) in solid-state dye-sensitized solar cells (DSSCs) and, in particular, analysis of the efficiency losses during these primary photoreactions is essential for designing new and efficient photosensitizers. Phthalocyanines (Pcs) are potentially interesting sensitizers having absorption in the red side of the optical spectrum and known to be efficient electron donors. However, the efficiencies of Pc-sensitized DSSCs are lower than that of the best DSSCs, which is commonly attributed to the aggregation tendency of Pcs. In this study, we employ ultrafast spectroscopy to discover why and how much does the aggregation affect the efficiency. The samples were prepared on a standard fluorine-doped tin oxide (FTO) substrates covered by a porous layer of TiO2 nanoparticles, functionalized by a Pc sensitizer and filled by a hole transporting material (Spiro-MeOTAD). The study demonstrates that the aggregation can be suppressed gradually by using co-adsorbates, such as chenodeoxycholic acid (CDCA) and oleic acid, but rather high concentrations of co-adsorbateis required. Gradually, a few times improvement of quantum efficiencywas observed at sensitizer/co-adsorbate ratio Pc/CDCA = 1:10 and higher.The time-resolved spectroscopy studies were complemented by standardphotocurrent measurements of the same sample structures, which alsoconfirmed gradual increase in photon-to-current conversion efficiencyon mixing Pc with CDCA.
机译:了解固态染料敏化太阳能电池(DSSC)中电荷分离(CS)的主要过程,尤其是分析这些主要光反应过程中的效率损失对于设计新型高效的光敏剂至关重要。酞菁(Pcs)是潜在令人感兴趣的敏化剂,在光谱的红色侧具有吸收并且已知是有效的电子给体。但是,Pc敏感的DSSC的效率低于最佳DSSC的效率,这通常归因于Pcs的聚集趋势。在这项研究中,我们采用超快光谱技术来发现聚集的原因和影响效率的程度。样品是在标准的氟掺杂氧化锡(FTO)基底上制备的,该基底被TiO2纳米颗粒的多孔层覆盖,被Pc敏化剂官能化并被空穴传输材料(Spiro-MeOTAD)填充。研究表明,可以通过使用共吸附物(例如鹅去氧胆酸(CDCA)和油酸)逐步抑制聚集,但是使用高浓度的共吸附物是必须的。逐渐地,量子效率提高了几倍在敏化剂/共吸附物比率Pc / CDCA = 1:10或更高时观察到。时间分辨光谱研究得到了标准的补充相同样品结构的光电流测量确认光子-电流转换效率逐渐提高将PC与CDCA混合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号