首页> 美国卫生研究院文献>iScience >Synergy of Sulfur/Polyacrylonitrile Composite and Gel Polymer Electrolyte Promises Heat-Resistant Lithium-Sulfur Batteries
【2h】

Synergy of Sulfur/Polyacrylonitrile Composite and Gel Polymer Electrolyte Promises Heat-Resistant Lithium-Sulfur Batteries

机译:硫/聚丙烯腈复合材料与凝胶聚合物电解质的协同作用有望成为耐热的锂硫电池

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionExploring better energy storage devices with high energy density, low cost, high safety, and long lifespan has boosted the development of new battery systems beyond the current mainstream lithium ion batteries (LIBs) (, , ). Among various alternative battery system candidates, Li-S batteries are considered one of the most promising electrochemical power sources. The cathode material (elemental sulfur), exhibits high theoretical specific capacity of 1,672 mAh g−1, calculated from the reversible reaction S8 + 16 e → 8 S2−, which enables Li-S batteries to achieve a high theoretical energy density of up to 2,600 W h kg−1, five times higher than those of present LIBs (, , , , , , ). In addition, sulfur, as one of the key materials of various industries, is naturally abundant, has low cost, and is environment friendly when compared with the commercial cathode materials such as LiCoO2, and LiFePO4 (, , ). However, the practical application of Li-S batteries is still plagued with numerous challenges, such as the insulating nature of elemental sulfur and the discharge product (Li2S). Besides, lithium polysulfides (LiPSs), which are generated by a multi-electron conversion reaction and easily dissolvable into the electrolyte, would cause shuttling effect between the two electrodes and form a passivating layer on the surface of lithium metal anode, including insulating sulfide species (Li2S, Li2S2). These phenomena result in fast capacity fading and low coulombic efficiency of Li-S batteries (, ).Various attempts, such as cathode modification (nanostructure (href="#bib24" rid="bib24" class=" bibr popnode">Li et al., 2017a, href="#bib25" rid="bib25" class=" bibr popnode">Li et al., 2017b, href="#bib47" rid="bib47" class=" bibr popnode">Yang et al., 2018a, href="#bib48" rid="bib48" class=" bibr popnode">Yang et al., 2018b), carbon-based composite (href="#bib14" rid="bib14" class=" bibr popnode">Gao et al., 2019, href="#bib18" rid="bib18" class=" bibr popnode">Hwa et al., 2017, href="#bib20" rid="bib20" class=" bibr popnode">Jayaprakash et al., 2011, href="#bib24" rid="bib24" class=" bibr popnode">Li et al., 2017a, href="#bib25" rid="bib25" class=" bibr popnode">Li et al., 2017b, href="#bib26" rid="bib26" class=" bibr popnode">Li et al., 2018a, href="#bib27" rid="bib27" class=" bibr popnode">Li et al., 2018b, href="#bib28" rid="bib28" class=" bibr popnode">Li et al., 2018c, href="#bib29" rid="bib29" class=" bibr popnode">Li et al., 2018d, href="#bib45" rid="bib45" class=" bibr popnode">Yang et al., 2016, href="#bib46" rid="bib46" class=" bibr popnode">Yang et al., 2017), doping (href="#bib53" rid="bib53" class=" bibr popnode">Zhou et al., 2017), anode protection (href="#bib5" rid="bib5" class=" bibr popnode">Cha et al., 2018), electrolyte additives (href="#bib41" rid="bib41" class=" bibr popnode">Wang et al., 2018a), targeted binders (href="#bib22" rid="bib22" class=" bibr popnode">Li et al., 2015), and functional separators (href="#bib15" rid="bib15" class=" bibr popnode">Ghazi et al., 2017), have been proposed to regulate the behaviors of LiPSs. Metal oxides (href="#bib16" rid="bib16" class=" bibr popnode">Han et al., 2013, href="#bib51" rid="bib51" class=" bibr popnode">Zhou et al., 2013), sulfides (href="#bib6" rid="bib6" class=" bibr popnode">Chen et al., 2017, href="#bib7" rid="bib7" class=" bibr popnode">Cheng et al., 2018) or phosphide (M–O/S/P) (href="#bib50" rid="bib50" class=" bibr popnode">Zhong et al., 2018), and perovskite nanoparticles (href="#bib21" rid="bib21" class=" bibr popnode">Kong et al., 2018) have also been implemented to immobilize LiPSs and guide the Li2S formation in Li-S batteries.Besides the aforementioned challenges, heat tolerance of Li-S batteries is important for practical applications, yet not easy to realize, because the dissolution of the LiPSs is aggravated at high temperature, and the shuttle effect is strengthened as well (href="#bib4" rid="bib4" class=" bibr popnode">Busche et al., 2014). In addition, the safety concern of Li-S batteries at elevated temperature is essential, because of the low boiling and flash points of the commonly used ether-based electrolytes (href="#bib23" rid="bib23" class=" bibr popnode">Li et al., 2016, href="#bib26" rid="bib26" class=" bibr popnode">Li et al., 2018a, href="#bib27" rid="bib27" class=" bibr popnode">Li et al., 2018b, href="#bib28" rid="bib28" class=" bibr popnode">Li et al., 2018c, href="#bib29" rid="bib29" class=" bibr popnode">Li et al., 2018d). So far only a few articles have touched upon this topic. Jin et al. designed a hollow Co3S4 nanobox with interconnected carbon nanotubes as the sulfur host and realized a cycle retention of 75.3% over 300 cycles at 335 mA g−1 at 50°C in an ether-based electrolyte (href="#bib6" rid="bib6" class=" bibr popnode">Chen et al., 2017). Zhang et al. entrapped sulfur into porous graphene and enabled the Li-S batteries operated at 60°C with a capacity of 551 mAh g−1sulfur at a current density of 1,672 mA g−1 (href="#bib17" rid="bib17" class=" bibr popnode">Huang et al., 2013). Regarding the safety concerns of the ether-based electrolyte, revisiting the traditional carbonate electrolyte would be an effective strategy. Sun et al. used molecular layer deposition method to coat aglucone on C-S electrode and enabled the Li-S batteries cycled in a carbonate electrolyte at a temperature range of −20°C to 55°C with high reversibility (href="#bib23" rid="bib23" class=" bibr popnode">Li et al., 2016, href="#bib26" rid="bib26" class=" bibr popnode">Li et al., 2018a, href="#bib27" rid="bib27" class=" bibr popnode">Li et al., 2018b, href="#bib28" rid="bib28" class=" bibr popnode">Li et al., 2018c, href="#bib29" rid="bib29" class=" bibr popnode">Li et al., 2018d).A promising cathode material for Li-S batteries, sulfur/polyacrylonitrile nanocomposites (SPAN), was proposed (href="#bib39" rid="bib39" class=" bibr popnode">Wang et al., 2002, href="#bib40" rid="bib40" class=" bibr popnode">Wang et al., 2003) and allows a Li-S battery operated in a carbonate electrolyte (href="#bib39" rid="bib39" class=" bibr popnode">Wang et al., 2002, href="#bib43" rid="bib43" class=" bibr popnode">Wei et al., 2015). It can be synthesized by a facile annealing procedure with sulfur and polyacrylonitrile (PAN) as the mere raw materials, and the synthesis method can be easily scaled up. Although great efforts have been made, the structure of SPAN and its reaction mechanism during cycling are still controversial (href="#bib11" rid="bib11" class=" bibr popnode">Fanous et al., 2011, href="#bib12" rid="bib12" class=" bibr popnode">Frey et al., 2017, href="#bib19" rid="bib19" class=" bibr popnode">Hwang et al., 2013, href="#bib26" rid="bib26" class=" bibr popnode">Li et al., 2018a, href="#bib27" rid="bib27" class=" bibr popnode">Li et al., 2018b, href="#bib28" rid="bib28" class=" bibr popnode">Li et al., 2018c, href="#bib29" rid="bib29" class=" bibr popnode">Li et al., 2018d, href="#bib30" rid="bib30" class=" bibr popnode">Liu et al., 2018, href="#bib39" rid="bib39" class=" bibr popnode">Wang et al., 2002, href="#bib40" rid="bib40" class=" bibr popnode">Wang et al., 2003, href="#bib41" rid="bib41" class=" bibr popnode">Wang et al., 2018a, href="#bib42" rid="bib42" class=" bibr popnode">Wang et al., 2018b, href="#bib43" rid="bib43" class=" bibr popnode">Wei et al., 2015).Herein, we report a Li-S battery with excellent high-temperature performance, by using SPAN as positive electrode, and gel polymer membrane (GPM) soaked in carbonate electrolyte. The Li-S battery could be operated at a high temperature at 60°C; a high specific capacity of 547.8 mAh g−1 can be obtained at 250 mA g−1, and even when the current density increases to 2,500 mA g−1, a high reversible capacity of 415 mAh g−1 can still be retained. In addition, the electrochemical process of SPAN toward Li during cycling is discussed. The synergistic effects of SPAN and the gel polymer electrolyte (GPE) enable the excellent high-temperature behavior of Li-S battery, in terms of high energy density, rate capability, safety, and cycle stability.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介探索高能量密度,低成本,高安全性和长寿命的更好的储能设备寿命已经推动了新电池系统的开发,超越了目前的主流锂离子电池(LIB)(,,)。在各种可供选择的替代电池系统中,Li-S电池被认为是最有前途的电化学电源之一。根据可逆反应S8 + 16 e -→8 S 计算得出的正极材料(元素硫)具有1,672 mAh g -1 的高理论比容量2-,这使Li-S电池可实现高达2,600 W h kg -1 的高理论能量密度,是当前LIB的五倍。 ,,)。另外,与各种工业正极材料如LiCoO 2和LiFePO 4(,)相比,作为各种工业的关键材料之一的硫自然丰富,成本低并且对环境友好。然而,Li-S电池的实际应用仍然受到许多挑战的困扰,例如元素硫和放电产物(Li 2 S)的绝缘性。此外,通过多电子转化反应生成并易于溶于电解质的多硫化锂(LiPSs)会引起两个电极之间的穿梭效应,并在锂金属阳极表面形成钝化层,包括绝缘硫化物(Li2S,Li2S2)。这些现象导致Li-S电池的快速容量衰减和库伦效率低。各种尝试,例如阴极修饰(纳米结构(href="#bib24" rid="bib24" class=" bibr popnode"> Li et al。,2017a ,href="#bib25" rid="bib25" class=" bibr popnode"> Li et al。,2017b ,href =“#bib47” rid =“ bib47” class =“ bibr popnode”>杨等,2018a ,href="#bib48" rid="bib48" class=" bibr popnode">杨等,2018b < / a>),基于碳的复合材料(href="#bib14" rid="bib14" class=" bibr popnode">高等人,2019 ,href =“#bib18”摆脱=“ bib18” class =“ bibr popnode”> Hwa等人,2017 ,href="#bib20" rid="bib20" class=" bibr popnode"> Jayaprakash等人,2011 ,href="#bib24" rid="bib24" class=" bibr popnode"> Li et al。,2017a ,href =“#bib25” rid =“ bib25” class =“ bibr popnode“> Li et al。,2017b ,href="#bib26" rid="bib26" class=" bibr popnode"> Li et al。,2018a ,href = “#bib27” rid =“ bib27” class =“ bibr popnode”> Li等,2018b ,href="#bib28" rid="bib28" class=" bibr popnode"> Li et al。,2018c ,href =“#bib29” rid =“ bib29” class =“ bibr popnode “> Li et al。,2018d ,href="#bib45" rid="bib45" class=" bibr popnode"> Yang et al。,2016 ,href =”# bib46“ rid =” bib46“ class =” bibr popnode“> Yang等人,2017 ),掺杂(href="#bib53" rid="bib53" class=" bibr popnode"> Zhou等等,2017 ),阳极保护(href="#bib5" rid="bib5" class=" bibr popnode"> Cha等人,2018 ),电解质添加剂(href =“#bib41” rid =“ bib41” class =“ bibr popnode”> Wang等人,2018a ),目标活页夹(href =“#bib22” rid =“ bib22” class =“ bibr popnode“> Li等人,2015 )和功能分隔符(href="#bib15" rid="bib15" class=" bibr popnode"> Ghazi等人,2017 )已经提出了调节LiPS的行为。金属氧化物(href="#bib16" rid="bib16" class=" bibr popnode"> Han et al。,2013 ,href =“#bib51” rid =“ bib51” class =“ bibr popnode“> Zhou等人,2013 ),硫化物(href="#bib6" rid="bib6" class=" bibr popnode"> Chen等人,2017 ,< a href =“#bib7” rid =“ bib7” class =“ bibr popnode”> Cheng等人,2018 )或磷化物(M–O / S / P)(href =“#bib50” rid =“ bib50” class =“ bibr popnode”> Zhong等人,2018 )和钙钛矿纳米颗粒(href="#bib21" rid="bib21" class=" bibr popnode"> Kong等人) (2018年,等)来固定LiPS和引导Li-S电池中Li2S的形成。除了上述挑战之外,Li-S电池的耐热性对于实际应用很重要,但并不容易实现,因为LiPS的溶解在高温下会加剧,并且穿梭效应也会增强(href="#bib4" rid="bib4" class=" bibr popnode"> Busche等人,2014 )。另外,由于常用的基于醚的电解质的沸点和闪点低,因此高温锂电池的安全性至关重要。(href =“#bib23” rid =“ bib23” class =“ bibr popnode“> Li等人,2016 ,href="#bib26" rid="bib26" class=" bibr popnode">李等人,2018a ,href =“#bib27” rid =“ bib27” class =“ bibr popnode “> Li et al。,2018b ,href="#bib28" rid="bib28" class=" bibr popnode"> Li et al。,2018c ,href =”# bib29“ rid =” bib29“ class =” bibr popnode“> Li等人,2018d )。到目前为止,只有几篇文章涉及该主题。 Jin等。设计了一个中空的Co3S4纳米盒,该纳米盒具有相互连接的碳纳米管作为硫主体,并在以醚为基础的电解质(中,在 335 mA g -1 在50°C下,在300个循环中实现了75.3%的循环保持率。 href =“#bib6” rid =“ bib6” class =“ bibr popnode”> Chen等人,2017 )。张等。将硫捕获到多孔石墨烯中,并使Li-S电池能够在60°C的温度下以551 mAh g -1 硫的容量工作,电流密度为1,672 mA g -1 (href="#bib17" rid="bib17" class=" bibr popnode"> Huang等人,2013 )。关于基于醚的电解质的安全性问题,重新考虑传统的碳酸盐电解质将是一种有效的策略。太阳等人使用分子层沉积方法在CS电极上涂覆了糖苷配基,并使Li-S电池在-20°C至55°C的温度范围内的碳酸盐电解质中循环,具有高可逆性(href =“#bib23” rid = “ bib23” class =“ bibr popnode”> Li等,2016 ,href="#bib26" rid="bib26" class=" bibr popnode"> Li等,2018a ,href="#bib27" rid="bib27" class=" bibr popnode"> Li et al。,2018b ,href =“#bib28” rid =“ bib28” class =“ bibr popnode“> Li等人,2018c ,href="#bib29" rid="bib29" class=" bibr popnode"> Li等人,2018d )。一种很有前途的正极材料对于Li-S电池,提出了硫/聚丙烯腈纳米复合材料(SPAN)(href="#bib39" rid="bib39" class=" bibr popnode"> Wang等,2002 ,href =“#bib40” rid =“ bib40” class =“ bibr popnode”> Wang等人,2003 ),并允许锂碳电池在碳酸盐电解质中运行(href =“#bib39” rid =“ bib39” class =“ bibr popnode”> Wang等人,2002 ,href =“#bib43” rid =“ bib43” class =“ bibr popnode“> Wei等人,2015 )。它可以通过简单的退火程序以硫和聚丙烯腈(PAN)为原料进行合成,并且合成方法可以轻松扩大规模。尽管已经做出了巨大努力,但SPAN的结构及其在循环过程中的反应机制仍存在争议(href="#bib11" rid="bib11" class=" bibr popnode"> Fanous et al。,2011 ,href="#bib12" rid="bib12" class=" bibr popnode"> Frey等人,2017 ,href =“#bib19” rid =“ bib19” class =“ bibr popnode“> Hwang等人,2013 ,href="#bib26" rid="bib26" class=" bibr popnode"> Li等人,2018a ,href =” #bib27“ rid =” bib27“ class =” bibr popnode“> Li等,2018b ,href="#bib28" rid="bib28" class=" bibr popnode"> Li等。 ,2018c ,href="#bib29" rid="bib29" class=" bibr popnode"> Li et al。,2018d ,href =“#bib30” rid =“ bib30 “ class =” bibr popnode“> Liu等人,2018 ,href="#bib39" rid="bib39" class=" bibr popnode"> Wang等人,2002 , href="#bib40" rid="bib40" class=" bibr popnode"> Wang等人,2003 ,href =“#bib41” rid =“ bib41” class =“ bibr popnode” > Wang等人,2018a ,href="#bib42" rid="bib42" class=" bibr popnode"> Wang等人等,2018b ,href="#bib43" rid="bib43" class=" bibr popnode"> Wei等人,2015 )。在这里,我们报告了一块锂电池通过将SPAN用作正电极,并将凝胶聚合物膜(GPM)浸入碳酸盐电解质中,具有优异的高温性能。 Li-S电池可在60°C的高温下运行;在250 mA g -1 时甚至在电流密度增加到2500 mA g -1时也可获得547.8 mAh g -1 的高比容量,仍可保持415 mAh g -1 的高可逆容量。此外,讨论了循环过程中SPAN对Li的电化学过程。在高能量密度,倍率性能,安全性和循环稳定性方面,SPAN和凝胶聚合物电解质(GPE)的协同作用使Li-S电池具有出色的高温性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号