class='head no_bottom_margin' id='sec1title'>Int'/> Natrium Doping Pushes the Efficiency of Carbon-Based CsPbI3 Perovskite Solar Cells to 10.7
首页> 美国卫生研究院文献>iScience >Natrium Doping Pushes the Efficiency of Carbon-Based CsPbI3 Perovskite Solar Cells to 10.7
【2h】

Natrium Doping Pushes the Efficiency of Carbon-Based CsPbI3 Perovskite Solar Cells to 10.7

机译:钠掺杂将碳基CsPbI3钙钛矿太阳能电池的效率提高到10.7%

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionOrganic-inorganic hybrid perovskite solar cells (PSCs) have attracted tremendous attention for their rapidly rising power conversion efficiency (PCE), currently reaching over 23%, achieved by solution-based techniques (, , , ). However, the organic ions in the organic-inorganic hybrid perovskites can easily escape from lattice under thermal stress, which restricts their long-term practical application (, , , ). In this regard, inorganic perovskites appear to be highly promising light absorbers owing to their good thermal stability (, ). Among various inorganic perovskites, CsPbI3 perovskite is the most suitable one because of its appropriate band gap (1.73 eV) for photovoltaic (PV) applications (, , , , ).Other than the potential problems of perovskites as an active layer material in PSCs, the adoption of organic hole transport materials (HTMs) may also limit the stability of PSCs because they are commonly thermally unstable and susceptible to ion migration and metal electrode corrosion eventually causing device degradation (href="#bib29" rid="bib29" class=" bibr popnode">Swarnkar et al., 2016, href="#bib10" rid="bib10" class=" bibr popnode">Eperon et al., 2015, href="#bib22" rid="bib22" class=" bibr popnode">Luo et al., 2016, href="#bib21" rid="bib21" class=" bibr popnode">Liang et al., 2017b). To tackle this issue, proposal has been put forward to replace the organic HTM and the metal electrode with a carbon electrode, which for the past few years has proved to be an effective approach (href="#bib7" rid="bib7" class=" bibr popnode">Chen and Yang, 2017). Some works on carbon-based HTM-free PSCs (C-PSCs) have employed CsPbI3 as a light absorber, and in our own work, a PCE of 9.5% has been achieved previously (href="#bib37" rid="bib37" class=" bibr popnode">Xiang et al., 2018). However, such a PCE is far lower than those achieved by the C-PSCs based on organic-inorganic hybrid perovskites. According to the previous works, the low PCE can be mainly attributable to the low obtainable open-circuit voltage (Voc) (href="#bib3" rid="bib3" class=" bibr popnode">Ball et al., 2013, href="#bib13" rid="bib13" class=" bibr popnode">Han et al., 2015, href="#bib40" rid="bib40" class=" bibr popnode">Zhang et al., 2017, href="#bib20" rid="bib20" class=" bibr popnode">Liang et al., 2017a), i.e., below 0.8 V. The low Voc should originate from the low grain quality of CsPbI3 film or the mismatched energy band levels at charge collection interface (href="#bib1" rid="bib1" class=" bibr popnode">Ahmad et al., 2017, href="#bib10" rid="bib10" class=" bibr popnode">Eperon et al., 2015, href="#bib41" rid="bib41" class=" bibr popnode">Zhang et al., 2018, href="#bib6" rid="bib6" class=" bibr popnode">Chen et al., 2018, href="#bib28" rid="bib28" class=" bibr popnode">Sanehira et al., 2017).Herein, we address the above issues by doping the CsPbI3 inorganic perovskite at A site with Na element. It is found that the Na doping not only improved the morphology of CsPbI3 film but also significantly enhanced the grain quality, thus reducing the defect density. Furthermore, the Na doping offers a good handle to adjust the energy band levels of CsPbI3 film, raising the built-in potential and Voc. As a result, C-PSCs based on the Na-doped CsPbI3 film achieved a PCE as high as 10.7% with a Voc of 0.92 V, which are considerably higher than those obtained by the C-PSCs based on pure CsPbI3 film (PCE = 8.6%, Voc = 0.77 V). Besides, the non-encapsulated C-PSCs based on the Na-doped CsPbI3 film exhibit almost no PCE degradation after 70 days of storage in a dry air atmosphere.The whole procedure of C-PSC fabrication, including CsPbI3 deposition, was conducted in a dry air atmosphere (humidity∼10%–20%). The CsPbI3 films were deposited on TiO2 mesoporous scaffolds via a one-step spin-coating method with the precursor solution containing ∼1 M N,N-Dimethylformamide (DMF)·HI·PbI2, (1-x) M CsI, and x M NaI, followed by heating at 200°C to obtain black CsPbI3 perovskite films.X-ray diffraction (XRD) patterns of the perovskite films with different Na doping concentrations are shown in href="/pmc/articles/PMC6503139/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1A. As depicted in href="/pmc/articles/PMC6503139/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figures 1A and 1B, with Na doping content increasing, the (100) peak shifts to a higher 2θ, correlating to the lattice contraction. Therefore Na ions should have partially replaced Cs ions in the CsPbI3 lattice because Na atoms (1.02Å) are significantly smaller than Cs atoms (1.67Å). Moreover, as depicted in href="#mmc1" rid="mmc1" class=" supplementary-material">Figure S1, the films after storage for 7 days show almost the same XRD patterns as the corresponding as-prepared films, suggesting high phase stability. Secondary ion mass spectroscopy was further employed to study the composition difference between CsPbI3 and Cs0.95Na0.05PbI3 films. The depth profiling in href="/pmc/articles/PMC6503139/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figures 1C and href="#mmc1" rid="mmc1" class=" supplementary-material">S2 shows that Na ions have been doped into the CsPbI3 film, which distribute throughout the whole film. As a side note, Na atom concentration in the capping layer is slightly lower than that in the mesoporous layer. This could be interpreted as follows. The tolerance factor of CsPbI3 perovskite is small (t = 0.81), and it would be further lowered after the substitution of Cs with Na atoms, which would reduce the structural stability. To make the structure stable, Na atoms might thermodynamically tend to stay in the mesoporous TiO2 scaffold, because the nanopores in the scaffold could confine grain dimensions to nanosize (href="#bib8" rid="bib8" class=" bibr popnode">Choi et al., 2013) and there may be lattice strain at the CsPbI3/TiO2 interface, which both would help to stabilize the perovskite structure. Similar phenomenon has been reported for organic-inorganic perovskites when the ions with a large size mismatch degree were used as dopants (href="#bib27" rid="bib27" class=" bibr popnode">Qiao et al., 2018). To identify the chemical states of CsPbI3 and Cs0.95Na0.05PbI3 films, X-ray photoelectron spectra (XPS) have also been recorded. The high-resolution XPS spectra for various elements (Na 1s, Cs 3d, Pb 4f and I 3d) are shown in href="/pmc/articles/PMC6503139/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figures 1D and href="#mmc1" rid="mmc1" class=" supplementary-material">S3. Notably, a uniform shift in the peak positions of Cs 3d and Pb 4f to a lower binding energy is observed for Cs0.95Na0.05PbI3 film, whereas the peak position of I 3d shifts to a higher binding energy. These shifts should be correlated to the Na doping because the smaller Na atoms would cause the volume contraction of the BX6 (B = Pb or Mn; X = I or Br) octahedral and hence lead to the changes in chemical bonding (href="#bib44" rid="bib44" class=" bibr popnode">Zou et al., 2017, href="#bib19" rid="bib19" class=" bibr popnode">Li et al., 2016).href="/pmc/articles/PMC6503139/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6503139_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC6503139/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC6503139/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1Composition Characterizations of Cs1-xNaxPbI3 (0 ≤ x ≤ 0.1) Perovskite Films(A) XRD patterns.(B) Magnification of the (100) peak to show the peak shifts in the Na-doped film.(C) Secondary ion mass spectroscopy depth profile for Cs, Pb, I, and Na elements of CsPbI3 and Cs0.95Na0.05PbI3 films.(D) High-resolution XPS spectra of CsPbI3 and Cs0.95Na0.05PbI3 films.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介有机-无机混合钙钛矿太阳能电池(PSC)迅速引起人们的关注。通过基于解决方案的技术(,,,)实现的功率转换效率(PCE)当前达到23%以上。然而,有机-无机杂化钙钛矿中的有机离子在热应力下很容易从晶格中逸出,这限制了它们的长期实际应用。在这方面,无机钙钛矿由于其良好的热稳定性而似乎是非常有前途的光吸收剂。在各种无机钙钛矿中,CsPbI3钙钛矿是最合适的钙钛矿,因为它在光伏(PV)应用中具有合适的带隙(1.73 eV)(,,,,)。除了钙钛矿作为PSC活性层材料的潜在问题外,采用有机空穴传输材料(HTM)也可能会限制PSC的稳定性,因为它们通常是热不稳定的,并且易受离子迁移和金属电极腐蚀的影响,最终导致器件性能下降(href =“#bib29” rid =“ bib29” class =“ bibr popnode”> Swarnkar等人,2016 ,href="#bib10" rid="bib10" class=" bibr popnode"> Eperon等人,2015 ,< a href =“#bib22” rid =“ bib22” class =“ bibr popnode”>罗等人,2016 ,href="#bib21" rid="bib21" class=" bibr popnode"> Liang等人,2017b )。为了解决此问题,已经提出了用碳电极代替有机HTM和金属电极的建议,这在过去几年中被证明是一种有效的方法(href =“#bib7” rid =“ bib7 “ class =“ bibr popnode”> Chen and Yang,2017 )。一些基于碳的无HTM的PSC(C-PSC)的工作已经使用CsPbI3作为光吸收剂,在我们自己的工作中,以前已经实现了9.5%的PCE(href =“#bib37” rid =“ bib37“ class =” bibr popnode“> Xiang等人,2018 )。但是,这种PCE远低于基于有机-无机杂化钙钛矿的C-PSC所实现的PCE。根据之前的工作,PCE较低的主要原因是可获得的开路电压(Voc)较低(href="#bib3" rid="bib3" class=" bibr popnode"> Ball等, 2013 ,href="#bib13" rid="bib13" class=" bibr popnode"> Han等人,2015 ,href =“#bib40” rid =“ bib40” class =“ bibr popnode”> Zhang等人,2017 ,href="#bib20" rid="bib20" class=" bibr popnode"> Liang等人,2017a ),即低于0.8V。低Voc可能源于CsPbI3薄膜的低晶粒质量或电荷收集界面处的能带水平不匹配(href="#bib1" rid="bib1" class=" bibr popnode"> Ahmad等人,2017 ,href="#bib10" rid="bib10" class=" bibr popnode"> Eperon等人,2015 ,href =“#bib41” rid =“ bib41” class =“ bibr popnode”>张等人,2018 ,href="#bib6" rid="bib6" class=" bibr popnode">陈等人,2018 < / a>,href="#bib28" rid="bib28" class=" bibr popnode"> Sanehira等人,2017 )。在此,我们通过掺杂掺杂剂来解决上述问题CsPbI3无机钙钛矿位于A位点,含Na元素。发现Na掺杂不仅改善了CsPbI3薄膜的形貌,而且显着提高了晶粒质量,从而降低了缺陷密度。此外,Na掺杂为调节CsPbI3薄膜的能带水平提供了一个很好的方法,从而提高了内置电势和Voc。结果,基于Na掺杂的CsPbI3薄膜的C-PSC达到了10.7%的PCE,Voc为0.92 V,这远高于基于纯CsPbI3薄膜的C-PSC所获得的PCE(PCE = 8.6%,Voc = 0.77 V)。此外,基于Na掺杂的CsPbI3膜的未封装C-PSC在干燥空气中储存70天后几乎没有PCE降解。整个C-PSC的制造过程,包括CsPbI3沉积,都是在干燥空气环境(湿度〜10%–20%)。通过一步旋涂法将CsPbI3薄膜沉积在TiO 2 介孔支架上,前体溶液含〜1MN,N-二甲基甲酰胺(DMF)·HI·PbI 2 < / sub>,(1-x)M CsI和xM NaI然后在200°C加热以获得黑色的CsPbI 3 钙钛矿薄膜。href =“ / pmc中显示了不同Na掺杂浓度的钙钛矿薄膜的X射线衍射(XRD)图。 / articles / PMC6503139 / figure / fig1 /“ target =” figure“ class =” fig-table-link figpopup“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“ co-legend-rid =” lgnd_fig1“ >图1 A.如href =“ / pmc / articles / PMC6503139 / figure / fig1 /” target =“ figure” class =“ fig-table-link figpopup” rid-figpopup =“ fig1” rid-ob =“ ob-fig1图1A和1B,随着Na掺杂含量的增加,(100)峰移至更高的2θ,与晶格收缩有关。因此,由于Na原子(1.02Å)明显小于Cs原子(1.67Å),因此Na离子应部分取代了CsPbI 3 晶格中的Cs离子。此外,如href="#mmc1" rid="mmc1" class="Supplementary-material">图S1 所示,存放7天后的胶片显示的XRD图案几乎与相应的XRD图案相同。 -制备的膜,表明高相稳定性。进一步采用二次离子质谱法研究CsPbI 3 和Cs 0.95 Na 0.05 PbI 3 之间的组成差异电影。 href =“ / pmc / articles / PMC6503139 / figure / fig1 /” target =“ figure” class =“ fig-table-link figpopup” rid-figpopup =“ fig1” rid-ob =“ ob-图1 C和href="#mmc1" rid="mmc1" class="Supplementary-material"> S2 显示了Na离子已被掺杂到CsPbI 3 薄膜中,并分布在整个薄膜中。作为附带说明,覆盖层中的Na原子浓度略低于中孔层中的Na原子浓度。这可以解释如下。 CsPbI 3 钙钛矿的耐受因子很小(t = 0.81),并且在用Na原子取代Cs后会进一步降低,这会降低结构稳定性。为了使结构稳定,Na原子可能在热力学上倾向于保留在介孔TiO 2 支架中,因为支架中的纳米孔可以将晶粒尺寸限制为纳米尺寸(href =“#bib8” rid = “ bib8” class =“ bibr popnode”> Choi等人,2013 ),并且CsPbI 3 / TiO 2 界面可能存在晶格应变,两者都将有助于稳定钙钛矿的结构。当将具有大尺寸失配度的离子用作掺杂剂时,有机-无机钙钛矿也有类似现象(href="#bib27" rid="bib27" class=" bibr popnode"> Qiao等人,2018年。 )。鉴定CsPbI 3 和Cs 0.95 Na 0.05 PbI 3 薄膜的化学状态,X射线光电子能谱(XPS)也已记录。在href =“ / pmc / articles / PMC6503139 / figure / fig1 /” target =“ figure” class =“中显示了各种元素(Na 1s,Cs 3d,Pb 4f和I 3d)的高分辨率XPS光谱。 fig-table-link figpopup“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“ co-legend-rid =” lgnd_fig1“>图1 D和href =”#mmc1“ rid =“ mmc1” class =“ Supplementary-material”> S3 。值得注意的是,对于Cs 0.95 Na 0.05 PbI 3 ,观察到Cs 3d和Pb 4f的峰位置向较低的结合能均匀移动。膜,而I 3d的峰值位置转移到更高的结合能。这些位移应与Na掺杂相关,因为较小的Na原子会引起BX 6 (B = Pb或Mn; X = I或Br)八面体的体积收缩,从而导致变化在化学键合中(href="#bib44" rid="bib44" class=" bibr popnode"> Zou等人,2017 ,href =“#bib19” rid =“ bib19” class = “ bibr popnode”> Li等人,2016 )。<!-fig ft0-> <!-fig mode = article f1-> href =“ / pmc / articles / PMC6503139 / Figure / fig1 /“ target =” figure“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“> <!-fig / graphic | fig / alternatives / graphic mode =” anchored“ m1-> <一个class =“ inline_block ts_canvas” href =“ / core / lw / 2.0 / html / tileshop_pmc / tileshop_pmc_inline.html?title = Click%20on%20image%20to%20zoom&p = PMC3&id = 6503139_gr1.jpg” target =“ tileshopwindow”> < / a> target="object" href="/pmc/articles/PMC6503139/figure/fig1/?report=objectonly">在单独的窗口中打开 class =“ figpopup” href =“ / pmc / articles / PMC6503139 / figure / fig1 /” target =“ figure” rid-figpopup =“ fig1” rid-ob =“ ob-fig1”> Figu re1 <!-标题a7-> Cs 1-x Na x PbI 3 (0≤ x≤0.1)钙钛矿薄膜(A)X射线衍射图(B)放大(100)峰以显示Na掺杂薄膜中的峰位移(C)Cs,Pb,I的二次离子质谱深度分布,CsPbI 3 和Cs 0.95 Na 0.05 PbI 3 膜中的Na元素。(D)高分辨率CsPbI 3 和Cs 0.95 Na 0.05 PbI 3 薄膜的XPS光谱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号