class='head no_bottom_margin' id='sec1title'>Int'/> Sodium Ion Capacitor Using Pseudocapacitive Layered Ferric Vanadate Nanosheets Cathode
首页> 美国卫生研究院文献>iScience >Sodium Ion Capacitor Using Pseudocapacitive Layered Ferric Vanadate Nanosheets Cathode
【2h】

Sodium Ion Capacitor Using Pseudocapacitive Layered Ferric Vanadate Nanosheets Cathode

机译:使用伪电容性分层钒酸钒纳米片阴极的钠离子电容器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionElectrochemical energy storage (EES) devices play an indispensable role in our daily life owing to their widespread applications in portable electronics, electric vehicles, and large-scale regenerative energy storage systems (, ). Among these, Li-ion batteries (LIBs) offer high energy density (150–200 Wh kg−1) but not enough power density (<1 kW kg−1) (, ). The electrostatic double-layer capacitance (EDLC) can offer transitory high power output (>1 kW kg−1), but the low energy density (<10 Wh kg−1) limits their further applications (, ). The goal of next-generation EES devices is to achieve high energy density close to that of LIBs and high power density close to that of EDLCs (, ). In this case, a method of combining the operation mechanism of both LIBs and EDLCs to simultaneously utilize their individual advantages for the charge storage processes is proposed, that is, the first-generation hybrid ion capacitors (HICs) (). Since 2001, Amatucci and co-workers () constructed a hybrid Li+-ion capacitor (LIC) by using an EDLC-type activated carbon (AC) cathode and a nanostructured battery-type Li4Ti5O12 anode, which delivered an energy density up to 20 Wh kg−1 (∼3 times that of a conventional carbon-based supercapacitor). After that, many HICs were developed, such as Nb2O5//AC (), MoS2//AC (), Li3VO4//AC (), and so forth (, ). The energy densities of HICs were gradually improved (approached 140 Wh kg−1), which show great promising applications.The market of lithium-relate EES devices is huge and is rapidly growing; unfortunately, the lithium resource is limited (href="#bib13" rid="bib13" class=" bibr popnode">Deng et al., 2018b). As an emerging technology that could complement current LIBs/LICs, sodium ion storage technology has attracted much attention due to the low cost and wide distribution of abundant sodium resource (href="#bib13" rid="bib13" class=" bibr popnode">Deng et al., 2018b, href="#bib32" rid="bib32" class=" bibr popnode">Luo et al., 2016, href="#bib34" rid="bib34" class=" bibr popnode">Ni et al., 2018, href="#bib38" rid="bib38" class=" bibr popnode">Ren et al., 2017). Having similar configurations as LICs, the general sodium ion capacitors (SICs) are using the AC as cathode and the battery-type or pseudocapacitive oxides/sulfides as anode (href="#bib16" rid="bib16" class=" bibr popnode">Dong et al., 2017, href="#bib44" rid="bib44" class=" bibr popnode">Wang et al., 2017a). Recently, many investigations on the SICs have been published, indicating the wide attention in this area. Several SIC configurations, such as NaTi2(PO4)3//AC (href="#bib48" rid="bib48" class=" bibr popnode">Wei et al., 2017a, href="#bib49" rid="bib49" class=" bibr popnode">Wei et al., 2017b), Nb2O5//AC (href="#bib12" rid="bib12" class=" bibr popnode">Deng et al., 2018a, href="#bib29" rid="bib29" class=" bibr popnode">Lim et al., 2016), TiO2//AC (href="#bib25" rid="bib25" class=" bibr popnode">Le et al., 2017), Ti(O,N)//AC (href="#bib16" rid="bib16" class=" bibr popnode">Dong et al., 2017), and Na2Ti3O7//AC (href="#bib15" rid="bib15" class=" bibr popnode">Dong et al., 2016), show advantages in high-rate applications. Till now, most of these concepts have used the high surface area of EDLC-type AC as the cathode. The EDLCs utilize non-faradaic electrostatic ion adsorption at the surface or inside pores to store charge, and the storage capacity is very limited (href="#bib5" rid="bib5" class=" bibr popnode">Augustyn et al., 2014a). The battery-type Na2Fe2(SO4)3 cathode has been used for SIC with enhanced capacity and energy; however, its unstratified reaction kinetics when matched with high pseudocapacitive Ti2C-MXene anode hindered the rate performance of the full capacitor (href="#bib43" rid="bib43" class=" bibr popnode">Wang et al., 2015). High-capacity cathode materials with excellent rate performance are relatively less explored, but much more are expected. The pseudocapacitance arises when reversible faradaic redox reaction at or near the surface of a material in contact with electrolyte, which delivers much higher capacitance than EDLCs but still with high rate capability (href="#bib5" rid="bib5" class=" bibr popnode">Augustyn et al., 2014a, href="#bib6" rid="bib6" class=" bibr popnode">Augustyn et al., 2014b, href="#bib31" rid="bib31" class=" bibr popnode">Lukatskaya et al., 2016). In this case, an appropriate pseudocapacitive cathode instead of an EDLC-type AC with much enlarged capacity is urgently required. Therefore, much higher energy density, close to battery level, will be expected. However, till date, this kind of cathode, especially for sodium storage, remains largely unexploited.Layered transition metal oxides (TMOs) with two-dimensional channels for Na+ ion intercalation are the most promising sodium storage materials (href="#bib13" rid="bib13" class=" bibr popnode">Deng et al., 2018b, href="#bib21" rid="bib21" class=" bibr popnode">Han et al., 2015, href="#bib52" rid="bib52" class=" bibr popnode">Yabuuchi et al., 2014). Recently, different phases and nano-morphologies of TMOs have shown attractive sodium storage performance (href="#bib11" rid="bib11" class=" bibr popnode">Dall’Agnese et al., 2015, href="#bib18" rid="bib18" class=" bibr popnode">Fang et al., 2017, href="#bib20" rid="bib20" class=" bibr popnode">Guo et al., 2017, href="#bib23" rid="bib23" class=" bibr popnode">Hwang et al., 2017, href="#bib37" rid="bib37" class=" bibr popnode">Raju et al., 2014, href="#bib41" rid="bib41" class=" bibr popnode">Su and Wang, 2013, href="#bib45" rid="bib45" class=" bibr popnode">Wang et al., 2017b). However, they rarely demonstrate pseudocapacitive storage abilities, especially for the ones used as cathodes. Wei et al. reported that the V2O5·nH2O xerogel with large interlayer spacing (∼11.53 Å) delivered a high capacity up to 338 mAh g−1 and an impressive pseudocapacitive sodium storage behavior (href="#bib46" rid="bib46" class=" bibr popnode">Wei et al., 2015a). However, the layered vanadium oxide xerogel structure was unstable during long-term cycles. The vanadates, derivatives of vanadium-based materials, with increased electronic conductivity and enlarged/stabilized layer structure without blocking ion diffusion show promising electrochemical performance (href="#bib17" rid="bib17" class=" bibr popnode">Durham et al., 2016). Sodium vanadate (Na1.25V3O8 and Na1.1V3O7.9) showed excellent cyclability and rate capability as a sodium storage cathode (href="#bib14" rid="bib14" class=" bibr popnode">Dong et al., 2015, href="#bib53" rid="bib53" class=" bibr popnode">Yuan et al., 2015). Among the families of vanadates, ferric vanadates are abundant and natural. The Kazakhstanite phase [Fe5V15O39(OH)9·9H2O, known as Fe-V-O], one of the ferric vanadates, has a large layered spacing (d002 = 10.51 Å), which is beneficial for sodium diffusion. However, the detailed charge storage mechanism and reaction kinetics are unclear yet.For anode materials, hard carbon (HC) is regarded as the most promising material (href="#bib27" rid="bib27" class=" bibr popnode">Li et al., 2018, href="#bib22" rid="bib22" class=" bibr popnode">Hou et al., 2017, href="#bib52" rid="bib52" class=" bibr popnode">Yabuuchi et al., 2014). HC has a “house-of-cards” structure, containing graphite-like microcrystallites and amorphous carbon. Liu and co-workers recently confirmed the “adsorption-intercalation” sodium storage process in HC materials (href="#bib36" rid="bib36" class=" bibr popnode">Qiu et al., 2017). In detail, the Na+ ions first absorb on the active sites on the HC surface, leading to a sloping voltage profile (above 0.2 V versus Na+/Na). Then, Na+ ions intercalate into the graphite-like microcrystallites, showing a flat voltage plateau (below 0.2 V versus Na+/Na). The electrochemical performance and the contribution of capacity from the adsorption and intercalation regions are related to the microstructure (href="#bib22" rid="bib22" class=" bibr popnode">Hou et al., 2017, href="#bib36" rid="bib36" class=" bibr popnode">Qiu et al., 2017). In this work, we utilize the capacitive adsorption mechanism of HC anode and match it with the high-rate pseudocapacitive cathode to assemble an SIC with both high energy and high power densities.Herein, the sodium storage performance of the layered Fe-V-O nanosheets (NSs) cathode is investigated, which delivers a high reversible sodium storage capacity up to 229 mAh g−1 at 0.25 C (1C = 200 mA g−1), excellent rate capability, and cycling stability. The pseudocapacitive sodium storage mechanism is further demonstrated by ex situ characterizations and detailed electrochemical kinetics analysis. Furthermore, we assemble an SIC, utilizing the high pseudocapacitive Fe-V-O cathode and capacitive adsorption HC anode (href="#bib22" rid="bib22" class=" bibr popnode">Hou et al., 2017, href="#bib36" rid="bib36" class=" bibr popnode">Qiu et al., 2017), which shows remarkable electrochemical performance. Owing to the pseudocapacitive Fe-V-O cathode having much higher capacity than that of AC, the assembled HC//Fe-V-O SIC delivers a high energy density of ∼194 Wh kg −1, which is very close to battery level. Meanwhile, the SIC shows excellent high average power density up to 3,942 W kg−1 with a high energy density of 32 Wh kg−1. This work demonstrates that pseudocapacitive cathodes are promising candidates for the next-generation SICs with both high energy and power density.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介电化学储能(EES)设备由于其在我们的日常生活中起着不可或缺的作用在便携式电子产品,电动汽车和大规模可再生能源存储系统(,)中的广泛应用。其中,锂离子电池(LIB)提供高能量密度(150–200 Wh kg -1 ),但功率密度不足(<1kW kg -1 ) (,)。静电双层电容(EDLC)可以提供短暂的高功率输出(> 1 kW kg -1 ),但能量密度低(<10 Wh kg -1 ) )限制了它们的进一步应用(,)。下一代EES器件的目标是实现接近LIB的高能量密度和接近EDLC(,)的高功率密度。在这种情况下,提出了一种将LIB和EDLC的工作机制相结合以同时利用它们各自的优势进行电荷存储过程的方法,即第一代混合离子电容器(HIC)。自2001年以来,Amatucci及其同事()通过使用EDLC型活性炭(AC)阴极和纳米结构电池型Li4Ti5O12阳极构建了混合的Li + 离子电容器(LIC),的能量密度高达20 Wh kg -1 (约为传统碳基超级电容器的3倍)。此后,开发了许多HIC,例如Nb2O5 // AC(),MoS2 // AC(),Li3VO4 // AC()等。 HIC的能量密度逐渐提高(达到140 Wh kg −1 ),具有广阔的应用前景。锂相关EES器件市场巨大,并且正在快速增长。不幸的是,锂资源有限(href="#bib13" rid="bib13" class=" bibr popnode"> Deng等人,2018b )。作为可以补充当前LIB / LIC的新兴技术,钠离子存储技术因其低成本和丰富的钠资源广泛分布而引起了广泛关注(href =“#bib13” rid =“ bib13” class =“ bibr popnode“>邓等人,2018b ,href="#bib32" rid="bib32" class=" bibr popnode">罗等人,2016 ,href =” #bib34“ rid =” bib34“ class =” bibr popnode“> Ni等人,2018 ,href="#bib38" rid="bib38" class=" bibr popnode"> Ren等人。 ,2017 )。普通的钠离子电容器(SIC)具有与LIC相似的构造,它们使用AC作为阴极,而使用电池型或伪电容性氧化物/硫化物作为阳极(href =“#bib16” rid =“ bib16” class =“ bibr popnode“> Dong等人,2017 ,href="#bib44" rid="bib44" class=" bibr popnode"> Wang等人,2017a )。最近,有关SIC的许多研究已经发表,表明在这一领域的广泛关注。几种SIC配置,例如NaTi2(PO4)3 // AC(href="#bib48" rid="bib48" class=" bibr popnode"> We et al。,2017a ,href = “#bib49” rid =“ bib49” class =“ bibr popnode”> Wei等人,2017b ),Nb2O5 // AC(href =“#bib12” rid =“ bib12” class =“ bibr popnode“> Deng等人,2018a ,href="#bib29" rid="bib29" class=" bibr popnode"> Lim等人,2016 ),TiO2 // AC (href="#bib25" rid="bib25" class=" bibr popnode"> Le et al。,2017 ),Ti(O,N)// AC(href =“#bib16 “ rid =” bib16“ class =” bibr popnode“> Dong等人,2017 )和Na2Ti3O 7 // AC(href =”#bib15“ rid =” bib15“ class =” bibr popnode“> Dong等人,2016 )在高速率应用中显示出优势。到现在为止,这些概念中的大多数已将EDLC型AC的高表面积用作阴极。 EDLC在表面或内部孔隙中利用非法拉第静电离子吸附来存储电荷,并且存储容量非常有限(href="#bib5" rid="bib5" class=" bibr popnode"> Augustyn等人,2014a )。电池型Na 2 Fe 2 (SO 4 3 阴极已被用于增强容量的SIC和能量;但是,当与高伪电容性Ti 2 C-MXene阳极匹配时,其无层次的反应动力学会阻碍整个电容器的速率性能(href =“#bib43” rid =“ bib43” class =“ bibr popnode“> Wang等人,2015 )。具有相对较高速率性能的高容量阴极材料的研究相对较少,但是期望更多。假电容是在与电解质接触的材料表面或附近发生可逆的法拉第氧化还原反应时产生的,它比EDLC提供更高的电容,但仍具有较高的倍率能力(href =“#bib5” rid =“ bib5” class = “ bibr popnode”> Augustyn等人,2014a ,href="#bib6" rid="bib6" class=" bibr popnode"> Augustyn等人。,2014b ,href="#bib31" rid="bib31" class=" bibr popnode"> Lukatskaya等人,2016 )。在这种情况下,迫切需要合适的伪电容阴极,而不是具有大得多容量的EDLC型AC。因此,将有望获得更高的能量密度,接近电池电量。然而,迄今为止,这种阴极,特别是用于钠存储的阴极仍未得到充分开发。具有二维通道用于Na + 离子嵌入的层状过渡金属氧化物(TMO)是最有前途的钠存储材料(href="#bib13" rid="bib13" class=" bibr popnode">邓等人,2018b ,href =“#bib21” rid =“ bib21” class =“ bibr popnode “> Han等人,2015 ,href="#bib52" rid="bib52" class=" bibr popnode"> Yabuuchi等人,2014 )。最近,TMO的不同相和纳米形态显示出有吸引力的钠储存性能(href="#bib11" rid="bib11" class=" bibr popnode"> Dall'Agnese等人,2015 , href="#bib18" rid="bib18" class=" bibr popnode">方et al。,2017 ,href =“#bib20” rid =“ bib20” class =“ bibr popnode” > Guo et al。,2017 ,href="#bib23" rid="bib23" class=" bibr popnode"> Hwang et al。,2017 ,href =“#bib37 “ rid =” bib37“ class =” bibr popnode“> Raju等人,2014 ,href="#bib41" rid="bib41" class=" bibr popnode"> Su and Wang,2013 < / a>,href="#bib45" rid="bib45" class=" bibr popnode"> Wang等人,2017b )。但是,它们很少表现出伪电容存储能力,尤其是对于用作阴极的那些。魏等。报告说,具有较大层间间距(〜11.53Å)的V 2 O 5 ·nH 2 O干凝胶提供了高达338 mAh的高容量g −1 和令人印象深刻的伪电容钠储存行为(href="#bib46" rid="bib46" class=" bibr popnode"> Wei等人,2015a )。然而,分层的钒氧化物干凝胶结构在长期循环中不稳定。钒酸盐是钒基材料的衍生物,具有增加的电子电导率和扩大的/稳定的层结构,而不会阻碍离子扩散,显示出有希望的电化学性能(href="#bib17" rid="bib17" class=" bibr popnode"> Durham等,2016 )。钒酸钠(Na 1.25 V 3 O 8 和Na 1.1 V 3 O 7.9 )作为钠存储阴极具有出色的循环能力和速率能力(href="#bib14" rid="bib14" class=" bibr popnode"> Dong等,2015 ,href="#bib53" rid="bib53" class=" bibr popnode">袁等人,2015 )。在钒酸盐家族中,钒酸铁含量丰富且天然。哈萨克斯坦相[Fe 5 V 15 O 39 (OH) 9 ·9H 2 O,称为Fe-VO],钒酸铁之一,具有较大的层状间距(d 002 =10.51Å),这对钠扩散非常有利。但是,详细的电荷存储机理和反应动力学还不清楚。对于阳极材料,硬碳(HC)被认为是最有前途的材料(href =“#bib27” rid =“ bib27” class =“ bibr popnode” > Li et al。,2018 ,href="#bib22" rid="bib22" class=" bibr popnode"> Hou et al。,2017 ,href =“#bib52 “ rid =” bib52“ class =” bibr popnode“> Yabuuchi等人,2014 )。 HC具有“卡片屋”结构,其中包含类石墨微晶和无定形碳。 Liu和他的同事最近证实了HC材料中的“吸附-嵌入”钠存储过程(href="#bib36" rid="bib36" class=" bibr popnode"> Qiu等人,2017 )。详细地讲,Na + 离子首先在HC表面的活性位上吸收,从而导致电压曲线倾斜(相对于Na + / Na高于0.2V)。然后,Na + 离子插入到石墨状微晶中,显示出平坦的电压平台(相对于Na + / Na低于0.2V)。电化学性能以及吸附区和插层区的容量贡献与微观结构有关(href="#bib22" rid="bib22" class=" bibr popnode"> Hou et al。,2017 ,href="#bib36" rid="bib36" class=" bibr popnode">邱等人,2017 )。在这项工作中,我们利用HC阳极的电容吸附机制,并将其与高速率伪电容阴极相匹配,以组装出具有高能量和高功率密度的SIC。在此,层状Fe-VO纳米片的钠存储性能( NSs)阴极进行了研究,该阴极在0.25 C(1C = 200 mA g -1 )时可提供高达229 mAh g -1 的高可逆钠存储容量,极佳的速率能力,以及循环稳定性。通过异位表征和详细的电化学动力学分析进一步证明了拟电容性钠存储机理。此外,我们利用高伪电容性Fe-VO阴极和电容性吸附HC阳极组装了SIC(href="#bib22" rid="bib22" class=" bibr popnode"> Hou等人,2017 ,href="#bib36" rid="bib36" class=" bibr popnode"> Qiu等人,2017 ),显示出了出色的电化学性能。由于伪电容式Fe-VO阴极的容量比AC高得多,因此组装的HC // Fe-VO SIC可以提供约194 Wh kg -1 的高能量密度,这非常接近到电池电量。同时,SIC表现出出色的高平均功率密度,高达3,942 W kg -1 和32 Wh kg -1 的高能量密度。这项工作表明伪电容阴极是具有高能量和功率密度的下一代SIC的有希望的候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号