首页> 美国卫生研究院文献>iScience >Toward a Low-Cost Alkaline Zinc-Iron Flow Battery with a Polybenzimidazole Custom Membrane for Stationary Energy Storage
【2h】

Toward a Low-Cost Alkaline Zinc-Iron Flow Battery with a Polybenzimidazole Custom Membrane for Stationary Energy Storage

机译:面向低成本碱性锌铁液流电池和聚苯并咪唑定制膜用于固定式储能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionFlow batteries are of tremendous importance for their application in increasing the quality and stability of the electricity generated by renewable energies like wind or solar power (, ). However, research into flow battery systems based on zinc/bromine, iron/chromium, and all-vanadium redox pairs, to name but a few, has encountered numerous problems, such as the corrosion of bromine, poor kinetics of Cr2+/Cr3+ redox pair, relatively high cost, and low energy density of all-vanadium redox pairs, although these battery systems are currently at the demonstration stage (, ). These barriers have, on the one hand, hindered their further wide scale deployment, and on the other hand, accelerated research efforts into new flow battery chemistries (or the next-generation flow batteries, aqueous or non-aqueous redox flow batteries) (, ). Among the reported new systems, non-aqueous redox flow battery systems, having the features of wide electrochemical window, high energy density, inexpensive redox active materials, etc., are currently at the proof-of-concept stage. However, the low concentration and poor ion conductivity of organic-based electrolytes are the most critical issues to overcome (). Although aqueous flow battery systems, like TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-based flow battery and quinone-based flow battery, have been successfully demonstrated at the laboratory scale (the electrode area is normally less than 10 cm2), their relatively low performance at high current density (normally less than 100 mA cm−2, when the energy efficiency [EE] was above 80%) (, , , , , ) limits the quick response for energy conversion and increases the integration cost. In addition, some of the systems still have low open cell voltage (OCV) or low electrolyte concentration. The low working current density together with the low OCV will result in low power density of a flow battery, further leading to an increased stack size and an overall increased capital cost of a flow battery system. Currently, only a few membrane materials (such as perfluorinated ion-exchange membranes because of their high stability in critical medium, e.g., strongly acidic or alkaline conditions and highly oxidative medium) have been considered (, , href="#bib26" rid="bib26" class=" bibr popnode">Wang et al., 2011, href="#bib12" rid="bib12" class=" bibr popnode">Li et al., 2015, href="#bib13" rid="bib13" class=" bibr popnode">Li et al., 2016, href="#bib14" rid="bib14" class=" bibr popnode">Lin et al., 2015, href="#bib15" rid="bib15" class=" bibr popnode">Lin et al., 2016, href="#bib20" rid="bib20" class=" bibr popnode">Orita et al., 2016), which will definitely further result in cost issue for battery stacks (href="#bib4" rid="bib4" class=" bibr popnode">Chu et al., 2017). Besides, upscaling for practical application of these newly developed aqueous flow battery systems have been rarely reported, which may induce limitations on the energy storage system development to some extent.The alkaline zinc ferricyanide flow battery owns the features of low cost and high voltage together with two-electron-redox properties, resulting in high capacity (href="#bib19" rid="bib19" class=" bibr popnode">McBreen, 1984, href="#bib2" rid="bib2" class=" bibr popnode">Adams et al., 1979, href="#bib1" rid="bib1" class=" bibr popnode">Adams, 1979). The alkaline zinc ferricyanide flow battery was first reported by G. B. Adams et al. in 1981; however, further work on this type of flow battery has been broken off, owing to its very poor cycle life and the relatively low operating current density (35 mA cm−2) (href="#bib19" rid="bib19" class=" bibr popnode">McBreen, 1984). The poor cycle life is mainly due to the zinc dendrite under alkaline medium, where a cadmium-plated (Zn- or Cu-plated) iron substrate was employed for zinc stripping/plating, while the low operating current density could be due to the high resistance of a cation-conducting membrane and severe zinc dendrite derived from the metal electrode.Here we present a long cycle life alkaline zinc-iron flow battery with a very high performance. The battery employs Zn(OH)42−/Zn and Fe(CN)63−/Fe(CN)64− as the negative and positive redox couples, respectively, while a self-made, cost-effective polybenzimidazole (PBI) membrane and a 3D carbon felt electrode were combined. The PBI membrane carrying heterocyclic rings can guarantee fast transportation of hydroxyl ions after doping with a base solution (href="#bib11" rid="bib11" class=" bibr popnode">Li et al., 2003, href="#bib31" rid="bib31" class=" bibr popnode">Yuan et al., 2016a). Most importantly, the PBI membrane with ultra-high mechanical stability can resist the zinc dendrite very well, which ensures the cycling stability of the alkaline zinc-iron flow battery. In addition, a 3D porous carbon felt with high porosity and surface area, which serves as guidance for the zinc stripping/plating and suppresses zinc dendrite/accumulation effectively, provides the battery with excellent cycling stability and rate performance. Moreover, the concentration of Fe(CN)63−/Fe(CN)64− redox couple can reach 1 mol L−1 by optimizing the composition of electrolyte, which is much higher than the reported concentration of this redox couple (0.4 mol L−1) (href="#bib20" rid="bib20" class=" bibr popnode">Orita et al., 2016, href="#bib14" rid="bib14" class=" bibr popnode">Lin et al., 2015, href="#bib15" rid="bib15" class=" bibr popnode">Lin et al., 2016, href="#bib23" rid="bib23" class=" bibr popnode">Selverston et al., 2016, href="#bib24" rid="bib24" class=" bibr popnode">Selverston et al., 2017). The high concentration of active materials thus can afford the battery with high energy density. As a result, the proposed zinc-iron flow battery demonstrated an EE of 82.78% even at a high current density of 160 mA cm−2. A charge/discharge experiment of 500 cycles further confirmed the excellent stability of this system.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介液流电池对于其在提高电能质量和稳定性方面的应用极为重要由风能或太阳能等可再生能源产生的(,)。然而,仅举几个例子,对基于锌/溴,铁/铬和全钒氧化还原对的液流电池系统的研究遇到了许多问题,例如溴的腐蚀,Cr 2的动力学差。 + / Cr 3 + 氧化还原对,成本相对较高,全钒氧化还原对的能量密度较低,尽管这些电池系统目前仍处于演示阶段(,)。这些障碍一方面阻碍了它们的进一步大规模部署,另一方面又加速了对新型液流电池化学物质(或下一代液流电池,水性或​​非水性氧化还原液流电池)的研究工作( )。在所报道的新系统中,具有宽的电化学窗口,高能量密度,廉价的氧化还原活性材料等特征的非水氧化还原液流电池系统目前处于概念验证阶段。然而,有机电解质的低浓度和差的离子电导率是需要克服的最关键的问题。尽管水性液流电池系统,如基于TEMPO(2,2,6,6-四甲基哌啶-1-氧基)的液流电池和基于醌的液流电池,已在实验室规模上得到了成功证明(电极面积通常小于10厘米 2 ),它们在高电流密度下(当能量效率[EE]高于80%时,通常小于100 mA cm -2 )相对较低的性能)( ,,,,,)限制了能量转换的快速响应并增加了集成成本。另外,某些系统仍具有低开池电压(OCV)或低电解质浓度。低工作电流密度和低OCV将导致液流电池的功率密度低,进一步导致液流电池系统的电池堆尺寸增加和总体投资成本增加。目前,仅考虑了几种膜材料(例如全氟化离子交换膜,因为它们在关键介质(例如强酸性或强碱性条件和高氧化性介质)中具有很高的稳定性)(,href =“#bib26” rid =“ bib26” class =“ bibr popnode”>王等人,2011 ,href="#bib12" rid="bib12" class=" bibr popnode">李等人,2015 < / a>,href="#bib13" rid="bib13" class=" bibr popnode"> Li et al。,2016 ,href =“#bib14” rid =“ bib14” class = “ bibr popnode”> Lin等人,2015 ,href="#bib15" rid="bib15" class=" bibr popnode"> Lin等人,2016 ,href =“#bib20” rid =“ bib20” class =“ bibr popnode”> Orita等人,2016 ),这肯定会进一步导致电池组的成本问题(href =“#bib4” rid =“ bib4” class =“ bibr popnode”> Chu等人,2017 )。除此之外,鲜有报道将这些新开发的液流电池系统进行实际应用升级,这在一定程度上可能会限制储能系统的发展。碱性铁氰化锌液流电池具有低成本,高电压的特点以及两种电子氧化还原特性,导致高容量(href="#bib19" rid="bib19" class=" bibr popnode">麦克布琳,1984 ,href =“#bib2” rid = “ bib2” class =“ bibr popnode”> Adams等,1979 ,href="#bib1" rid="bib1" class=" bibr popnode"> Adams,1979 )。碱性铁氰化锌液流电池由G.B.Adams等人首先报道。 1981年;但是,由于这种循环电池的循环寿命很差且工作电流密度相对较低(35 mA cm −2 )(href =“# bib19“ rid =” bib19“ class =” bibr popnode“> McBreen,1984 )。较差的循环寿命主要是由于碱性条件下的锌枝晶,锌的剥离/镀覆使用镉(镀锌或镀铜)铁基板,而低的工作电流密度可能是由于阳离子导电膜的电阻和源自金属电极的严重锌枝晶。在这里,我们提出了一种具有很高性能的长循环寿命碱性锌铁液流电池。该电池使用Zn(OH)4 2- / Zn和Fe(CN)6 3-−sup> / Fe(CN)6 4-作为正负氧化还原对,而自制,低成本的聚苯并咪唑(PBI)膜和3D碳毡电极结合在一起。带有杂环的PBI膜可确保在掺杂基本溶液后能够快速运输氢氧离子(href="#bib11" rid="bib11" class=" bibr popnode"> Li等,2003 ,href="#bib31" rid="bib31" class=" bibr popnode">袁等人,2016a )。最重要的是,具有超高机械稳定性的PBI膜可以很好地抵抗锌枝晶,从而确保了碱性锌铁液流电池的循环稳定性。此外,具有高孔隙率和高表面积的3D多孔碳毡可作为脱锌/镀锌的向导,并有效抑制锌枝晶/积聚,从而为电池提供了出色的循环稳定性和倍率性能。此外,Fe(CN)6 3 − / Fe(CN)6 4 − 氧化还原对的浓度可达到1mol L -1 通过优化电解质的组成,该电解质的组成要比该氧化还原对的报告浓度(0.4 mol L -1 )高得多(href =“#bib20” rid =“ bib20” class =“ bibr popnode“> Orita等,2016 ,href="#bib14" rid="bib14" class=" bibr popnode"> Lin等,2015 ,href = “#bib15” rid =“ bib15” class =“ bibr popnode”> Lin等人,2016 ,href="#bib23" rid="bib23" class=" bibr popnode"> Selverston等人。,2016 ,href="#bib24" rid="bib24" class=" bibr popnode"> Selverston等,2017 )。因此,高浓度的活性材料可以为电池提供高能量密度。结果,提出的锌-铁液流电池即使在160mA cm -2 的高电流密度下也显示出82.78%的EE。 500次循环的充电/放电实验进一步证实了该系统的出色稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号