首页> 美国卫生研究院文献>The Journal of Biological Chemistry >2-Alkylquinolone alkaloid biosynthesis in the medicinal plant Evodia rutaecarpa involves collaboration of two novel type III polyketide synthases
【2h】

2-Alkylquinolone alkaloid biosynthesis in the medicinal plant Evodia rutaecarpa involves collaboration of two novel type III polyketide synthases

机译:药用植物Evodia rutaecarpa中的2-烷基喹诺酮生物碱合成涉及两种新型III型聚酮化合物合酶的合作

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

2-Alkylquinolone (2AQ) alkaloids are pharmaceutically and biologically important natural products produced by both bacteria and plants, with a wide range of biological effects, including antibacterial, cytotoxic, anticholinesterase, and quorum-sensing signaling activities. These diverse activities and 2AQ occurrence in vastly different phyla have raised much interest in the biosynthesis pathways leading to their production. Previous studies in plants have suggested that type III polyketide synthases (PKSs) might be involved in 2AQ biosynthesis, but this hypothesis is untested. To this end, we cloned two novel type III PKSs, alkyldiketide-CoA synthase (ADS) and alkylquinolone synthase (AQS), from the 2AQ-producing medicinal plant, Evodia rutaecarpa (Rutaceae). Functional analyses revealed that collaboration of ADS and AQS produces 2AQ via condensations of N-methylanthraniloyl-CoA, a fatty acyl-CoA, with malonyl-CoA. We show that ADS efficiently catalyzes the decarboxylative condensation of malonyl-CoA with a fatty acyl-CoA to produce an alkyldiketide-CoA, whereas AQS specifically catalyzes the decarboxylative condensation of an alkyldiketide acid with N-methylanthraniloyl-CoA to generate the 2AQ scaffold via C–C/C–N bond formations. Remarkably, the ADS and AQS crystal structures at 1.80 and 2.20 Å resolutions, respectively, indicated that the unique active-site architecture with Trp-332 and Cys-191 and the novel CoA-binding tunnel with Tyr-215 principally control the substrate and product specificities of ADS and AQS, respectively. These results provide additional insights into the catalytic versatility of the type III PKSs and their functional and evolutionary implications for 2AQ biosynthesis in plants and bacteria.
机译:2-烷基喹诺酮(2AQ)生物碱是细菌和植物产生的药学和生物学上重要的天然产物,具有广泛的生物学效应,包括抗菌,细胞毒性,抗胆碱酯酶和群体感应信号传导活性。这些不同的活动和2AQ发生在极为不同的门中,引起了人们对其产生的生物合成途径的极大兴趣。先前在植物中的研究表明,IIIA型聚酮化合物合酶(PKS)可能参与了2AQ生物合成,但是这一假设未经检验。为此,我们从生产2AQ的药用植物Evodia rutaecarpa(芸苔科)中克隆了两种新型的III型PKS,即烷基二酮-CoA合酶(ADS)和烷基喹诺酮合酶(AQS)。功能分析表明,ADS和AQS的协作通过N-甲基蒽基-CoA(一种脂肪酰基-CoA)与丙二酰-CoA的缩合生成2AQ。我们表明,ADS有效地催化丙二酰辅酶A与脂肪酰基辅酶A的脱羧缩合,以生成烷基二酮-CoA,而AQS特异性地催化烷基二酮酸与N-甲基蒽基-辅酶A的脱羧缩合,以通过C生成2AQ骨架–C / C–N键的形成。值得注意的是,分辨率分别为1.80和2.20Å的ADS和AQS晶体结构表明,具有Trp-332和Cys-191的独特活性位点结构以及具有Tyr-215的新型CoA结合隧道主要控制了底物和产物ADS和AQS的特异性。这些结果为III型PKS的催化多功能性及其对植物和细菌中2AQ生物合成的功能和进化意义提供了进一步的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号