首页> 美国卫生研究院文献>Journal of Fungi >A Multiomic Approach to Understand How Pleurotus eryngii Transforms Non-Woody Lignocellulosic Material
【2h】

A Multiomic Approach to Understand How Pleurotus eryngii Transforms Non-Woody Lignocellulosic Material

机译:一种了解Pleurotus eryngii如何改变非木质木质纤维素材料的多种方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Pleurotus eryngii is a grassland-inhabiting fungus of biotechnological interest due to its ability to colonize non-woody lignocellulosic material. Genomic, transcriptomic, exoproteomic, and metabolomic analyses were combined to explain the enzymatic aspects underlaying wheat–straw transformation. Up-regulated and constitutive glycoside–hydrolases, polysaccharide–lyases, and carbohydrate–esterases active on polysaccharides, laccases active on lignin, and a surprisingly high amount of constitutive/inducible aryl–alcohol oxidases (AAOs) constituted the suite of extracellular enzymes at early fungal growth. Higher enzyme diversity and abundance characterized the longer-term growth, with an array of oxidoreductases involved in depolymerization of both cellulose and lignin, which were often up-regulated since initial growth. These oxidative enzymes included lytic polysaccharide monooxygenases (LPMOs) acting on crystalline polysaccharides, cellobiose dehydrogenase involved in LPMO activation, and ligninolytic peroxidases (mainly manganese-oxidizing peroxidases), together with highly abundant H2O2-producing AAOs. Interestingly, some of the most relevant enzymes acting on polysaccharides were appended to a cellulose-binding module. This is potentially related to the non-woody habitat of P. eryngii (in contrast to the wood habitat of many basidiomycetes). Additionally, insights into the intracellular catabolism of aromatic compounds, which is a neglected area of study in lignin degradation by basidiomycetes, were also provided. The multiomic approach reveals that although non-woody decay does not result in dramatic modifications, as revealed by detailed 2D-NMR and other analyses, it implies activation of the complete set of hydrolytic and oxidative enzymes characterizing lignocellulose-decaying basidiomycetes.
机译:杏鲍菇是生物技术感兴趣的草原栖菌由于其殖民非木质纤维素材料的能力。基因组,转录组学,exoproteomic和代谢组学分析合并解释酶方面垫层麦秆转化。上调和组成糖苷水解酶,多糖裂解酶,和糖酯酶活性上的多糖,木质素漆酶活性,和组成型/可诱导的芳基醇氧化酶(AAOS)的令人惊讶的高量的早期构成胞外酶的套件真菌的生长。更高酶的多样性和丰富特征在于长期的增长,与参与纤维素和木质素的解聚氧化还原酶的阵列,这往往由于初始生长上调。这些氧化酶包括作用于结晶多糖裂解多糖单加氧酶(LPMOs),纤维二糖脱氢酶参与LPMO活化,和木质素过氧化物酶(主要是锰氧化过氧化物酶),具有高度丰富的生产H2O2的AAOS在一起。有趣的是,一些作用于多糖最相关的酶的附在纤维素结合模块。这可能涉及到杏鲍菇的非木质栖(与许多担子菌的木栖)。此外,见解芳族化合物的胞内代谢,这是由担子菌木质素降解研究的被忽视的区域,也被提供。所述multiomic方法揭示的是,虽然非木本衰变不会导致显着的修改,通过详细的2D-NMR和其他分析所揭示的,它意味着成套水解和氧化酶表征木质纤维素的衰减担子菌的激活。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号