首页> 美国卫生研究院文献>Human Brain Mapping >Markov chain Monte Carlo methods for hierarchical clustering of dynamic causal models
【2h】

Markov chain Monte Carlo methods for hierarchical clustering of dynamic causal models

机译:Markov Chain Monte Carlo用于动态因果模型的分层聚类方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this article, we address technical difficulties that arise when applying Markov chain Monte Carlo (MCMC) to hierarchical models designed to perform clustering in the space of latent parameters of subject‐wise generative models. Specifically, we focus on the case where the subject‐wise generative model is a dynamic causal model (DCM) for functional magnetic resonance imaging (fMRI) and clusters are defined in terms of effective brain connectivity. While an attractive approach for detecting mechanistically interpretable subgroups in heterogeneous populations, inverting such a hierarchical model represents a particularly challenging case, since DCM is often characterized by high posterior correlations between its parameters. In this context, standard MCMC schemes exhibit poor performance and extremely slow convergence. In this article, we investigate the properties of hierarchical clustering which lead to the observed failure of standard MCMC schemes and propose a solution designed to improve convergence but preserve computational complexity. Specifically, we introduce a class of proposal distributions which aims to capture the interdependencies between the parameters of the clustering and subject‐wise generative models and helps to reduce random walk behaviour of the MCMC scheme. Critically, these proposal distributions only introduce a single hyperparameter that needs to be tuned to achieve good performance. For validation, we apply our proposed solution to synthetic and real‐world datasets and also compare it, in terms of computational complexity and performance, to Hamiltonian Monte Carlo (HMC), a state‐of‐the‐art Monte Carlo technique. Our results indicate that, for the specific application domain considered here, our proposed solution shows good convergence performance and superior runtime compared to HMC.
机译:在本文中,我们解决了在将Markov链蒙特卡罗(MCMC)应用于旨在在主题生成模型的潜在参数空间中进行聚类的分层模型时出现的技术困难。具体地,我们专注于主题生成模型是用于功能磁共振成像(FMRI)和簇的动态因果模型(DCM),并且在有效的脑连接方面定义了簇。虽然在异构群体中检测机械手上可解释的子群的有吸引力的方法,而反转这种分层模型代表了特别具有挑战性的情况,因为DCM通常具有其参数之间的高后相关性。在这种情况下,标准MCMC方案表现出差的性能和极其缓慢的收敛性。在本文中,我们调查了分层聚类的属性,这导致了所观察到的标准MCMC方案的故障,并提出了一种旨在提高收敛但保持计算复杂度的解决方案。具体而言,我们介绍一类提案分布,该分发旨在捕获聚类和主题生成模型的参数之间的相互依存性,并有助于减少MCMC方案的随机步道行为。批判性地,这些提案分布只会引入一个需要调整的单个覆盖物,以实现良好的性能。为了验证,我们将我们提出的解决方案应用于合成和现实世界数据集,并在计算复杂性和性能方面将其与汉密尔顿蒙特卡罗(HMC)进行比较,是最先进的蒙特卡罗技术。我们的结果表明,对于这里考虑的特定应用领域,我们所提出的解决方案显示与HMC相比的良好收敛性能和卓越的运行时间。

著录项

  • 期刊名称 Human Brain Mapping
  • 作者

    Yu Yao; Klaas E. Stephan;

  • 作者单位
  • 年(卷),期 2021(42),10
  • 年度 2021
  • 页码 2973–2989
  • 总页数 17
  • 原文格式 PDF
  • 正文语种
  • 中图分类 神经科学;
  • 关键词

    机译:计算精神病学;功能磁共振成像;生成嵌入;马尔可夫链蒙特卡罗采样;模型反演;

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号