首页> 美国卫生研究院文献>NPJ Microgravity >An advance in transfer line chilldown heat transfer of cryogenic propellants in microgravity using microfilm coating for enabling deep space exploration
【2h】

An advance in transfer line chilldown heat transfer of cryogenic propellants in microgravity using microfilm coating for enabling deep space exploration

机译:微杂珠涂层实现微杂物涂层的低温推进剂转移线寒冷传热的进展实现深空探索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A quenching (chilldown) process is a liquid-to-vapor phase change phenomenon that is governed by the “boiling curve”. This curve24 shows the heat transfer surface heat flux, q″, plotted against the surface degree of superheating, Tw − Tsat, where Tw is the tube wall inner surface temperature and Tsat is the saturation temperature corresponding to the boiling fluid bulk pressure. In boiling, if the heating source is externally supplied to the heater surface such as an embedded electrical resistance heating element, the process is heat-flux controlled and follows the route of A → B → D. In contrast, during quenching, the warm wall where the heat comes out does not have a heat supply, therefore, the heat transferring out of the wall can only come internally from the thermal capacity (stored energy) of the wall. The only way to remove heat from the wall is by lowering the inner wall surface temperature using a cooling flow. So quenching is a wall surface temperature-controlled process. Thus, a quenching process follows the route D → C → B → A. During quenching, film boiling is always the first mode of heat transfer encountered due to a relatively very hot surface. Owing to its very low heat fluxes at high wall temperatures25–27, film boiling usually dominates the quenching time and cannot be avoided in a traditional chilldown process. As a result, in traditional quenching processes, the thermal energy efficiency is extremely low. According to Shaeffer et al.5, the average quenching efficiency that is defined as the ratio of the amount of thermal energy removed from the wall versus the required cooling capability of the cryogen spent in a quenching process is about 8% that highlights the tremendous need to improve the quenching efficiency for many applications that require cryogens as the working fluid.
机译:淬火(chilldown)工艺是受了“沸腾曲线”支配的液体 - 蒸气相变的现象。此curve24示出了热传递表面热通量,Q“,作图过热的表面程度,TW - 柒,其中Tw为管壁内表面温度及七是对应于沸腾流体散装压力下的饱和温度。在沸腾,如果加热源从外部供应到加热器表面诸如嵌入式电阻加热元件,该方法是热通量控制和如下的A→B→D。与此相反的路径,淬火时,温暖的壁其中热散发出来不具有热的供给,因此,热壁的转移出来可以仅在内部从所述壁的热容量(存储的能量)来。从墙上去除热量的唯一方法是通过使用一个冷却流降低的内壁表面温度。所以淬火是一个壁面温度控制的过程。因此,淬火过程遵循路线d→C→乙→A.在淬火,膜沸腾是总是由于遇到一个相对非常热的表面的热传递的第一模式。由于其非常低的热通量在高壁temperatures25-27,膜通常沸腾占主导地位的淬火时间,并且不能在传统chilldown过程来避免。其结果是,在传统的淬火过程中,热能效率极低。根据Shaeffer等[5],被定义为从相对于壁在淬火过程所花费的致冷剂的所需冷却能力除去热能的量的比率的平均淬火效率为约8%该亮点的巨大需要改善需要致冷剂作为工作流体的许多应用淬火效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号