首页> 美国卫生研究院文献>Materials >Numerical Simulation Development and Computational Optimization for Directed Energy Deposition Additive Manufacturing Process
【2h】

Numerical Simulation Development and Computational Optimization for Directed Energy Deposition Additive Manufacturing Process

机译:用于定向能量沉积添加剂制造过程的数值模拟开发和计算优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The rapid growth of Additive Manufacturing (AM) in the past decade has demonstrated a significant potential in cost-effective production with a superior quality product. A numerical simulation is a steep way to learn and improve the product quality, life cycle, and production cost. To cope with the growing AM field, researchers are exploring different techniques, methods, models to simulate the AM process efficiently. The goal is to develop a thermo-mechanical weld model for the Directed Energy Deposition (DED) process for 316L stainless steel at an efficient computational cost targeting to model large AM parts in residual stress calculation. To adapt the weld model to the DED simulation, single and multi-track thermal simulations were carried out. Numerical results were validated by the DED experiment. A good agreement was found between predicted temperature trends for numerical simulation and experimental results. A large number of weld tracks in the 3D solid AM parts make the finite element process simulation challenging in terms of computational time and large amounts of data management. The method of activating elements layer by layer and introducing heat in a cyclic manner called a thermal cycle heat input was applied. Thermal cycle heat input reduces the computational time considerably. The numerical results were compared to the experimental data for thermal and residual stress analyses. A lumping of layers strategy was implemented to reduce further computational time. The different number of lumping layers was analyzed to define the limit of lumping to retain accuracy in the residual stress calculation. The lumped layers residual stress calculation was validated by the contour cut method in the deposited sample. Thermal behavior and residual stress prediction for the different numbers of a lumped layer were examined and reported computational time reduction.
机译:过去十年的添加剂制造(AM)的快速增长已经表现出具有优质产品的成本效益生产中的显着潜力。数值模拟是一种学习和提高产品质量,生命周期和生产成本的陡峭方式。为了应对越来越多的AM领域,研究人员正在探索不同的技术,方法,模型,以有效地模拟AM过程。目标是为316L不锈钢的定向能量沉积(DED)工艺开发一种热机械焊接模型,以有效的计算成本为目标,以模拟剩余应力计算中的大型AM部件。为了使焊接模型适应DED模拟,进行单轨和多轨热模拟。 DED实验验证了数值结果。在有关数值模拟和实验结果的预测温度趋势之间发现了一个良好的一致性。 3D固体零件中的大量焊接轨道使有限元过程模拟在计算时间和大量数据管理方面具有挑战性。施加了通过层激活元件层并以称为热循环热输入的循环方式引入热量的方法。热循环热输入显着降低了计算时间。将数值结果与热和残余应力分析的实验数据进行比较。实施了一策略的策略,以减少进一步的计算时间。分析了不同数量的集距层以定义集距的极限,以保持残余应力计算中的精度。通过沉积的样品中的轮廓切割方法验证了块状层残留应力计算。检查了对不同数量的块状层的热行为和残余应力预测,并报告了计算时间减少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号