首页> 美国卫生研究院文献>Bone Reports >Changes in scaffold porosity during bone tissue engineering in perfusion bioreactors considerably affect cellular mechanical stimulation for mineralization
【2h】

Changes in scaffold porosity during bone tissue engineering in perfusion bioreactors considerably affect cellular mechanical stimulation for mineralization

机译:灌注生物反应器骨组织工程中支架孔隙率的变化显着影响矿化的细胞机械刺激

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bone tissue engineering (BTE) experiments in vitro have shown that fluid-induced wall shear stress (WSS) can stimulate cells to produce mineralized extracellular matrix (ECM). The application of WSS on seeded cells can be achieved through bioreactors that perfuse medium through porous scaffolds. In BTE experiments in vitro, commonly a constant flow rate is used. Previous studies have found that tissue growth within the scaffold will result in an increase of the WSS over time. To keep the WSS in a reported optimal range of 10–30 mPa, the applied external flow rate can be decreased over time. To investigate what reduction of the external flow rate during culturing is needed to keep the WSS in the optimal range, we here conducted a computational study, which simulated the formation of ECM, and in which we investigated the effect of constant fluid flow and different fluid flow reduction scenarios on the WSS. It was found that for both constant and reduced fluid flow scenarios, the WSS did not exceed a critical value, which was set to 60 mPa. However, the constant flow velocity resulted in a reduction of the cell/ECM surface being exposed to a WSS in the optimal range from 50% at the start of culture to 18.6% at day 21. Reducing the fluid flow over time could avoid much of this effect, leaving the WSS in the optimal range for 40.9% of the surface at 21 days. Therefore, for achieving more mineralized tissue, the conventional manner of loading the perfusion bioreactors (i.e. constant flow rate/velocity) should be changed to a decreasing flow over time in BTE experiments. This study provides an in silico tool for finding the best fluid flow reduction strategy.
机译:体外骨组织工程(BTE)实验表明,流体诱导的壁剪切应力(WSS)可以刺激细胞以产生矿化细胞外基质(ECM)。通过通过多孔支架灌注介质的生物反应器可以实现WSS对种子细胞的应用。在体外的BTE实验中,通常使用恒定的流速。以前的研究发现,支架内的组织生长将导致随着时间的推移增加WSS。为了使WSS保持在报告的最佳范围的10-30MPa中,随着时间的推移,可以降低所施加的外部流量。为了探讨在最佳范围内保持培养过程中外部流量的降低,我们在这里进行了计算研究,模拟了ECM的形成,以及我们研究了恒定流体流动和不同流体的影响WSS上的流程减少方案。结果发现,对于恒定和减少的流体流动场景,WSS没有超过临界值,该值被设定为60MPa。然而,恒定的流速导致细胞/ ECM表面的降低,在第21天在培养的开始至18.6%的50%中暴露于WSS的电池/ ECM表面。减少流体流量随着时间的推移可能避免这种效果,在最佳范围内将WSS留在21天的40.9%。因此,为了实现更多的矿化组织,应在BTE实验中将常规方式加载灌注生物反应器(即恒定流速/速度)。本研究提供了一种用于寻找最佳流体流量减少策略的硅工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号