首页> 美国卫生研究院文献>Entropy >Application of a Fluid–Structure Interaction Model for Analysis of the Thermodynamic Process and Performance of Boil-Off Gas Compressors
【2h】

Application of a Fluid–Structure Interaction Model for Analysis of the Thermodynamic Process and Performance of Boil-Off Gas Compressors

机译:流体结构相互作用模型在蒸发气体压缩机的热力过程分析中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Boil-off gas (BOG) compressors are among the most critical devices in transportation and receiving systems for liquid natural gas (LNG) because they are used to pump out excess BOG from LNG storage tanks to ensure safety. Because of the ultralow suction temperature, the influence of heat transfer between the cold gas and the compressor parts on the in-cylinder thermodynamic process cannot be ignored. This paper reports the effects of suction temperature on the thermodynamic process and performance of a BOG compressor with consideration of gas pulsation. A computational fluid dynamics (CFD) model with dynamic and sliding meshes was established, in which user-defined functions (UDFs) were used to calculate the real-time valve lift to realize coupling between the thermodynamic process and the gas pulsation, and a performance test rig was constructed to verify the proposed numerical model. The simulated results agreed well with the experimental ones. The results show that as the suction temperature decreased from 30 °C to −150 °C, the first-stage volumetric efficiency decreased to 0.69, and the preheating increased to 45.8 °C. These results should provide academic guidance and an experimental basis for the design and optimization of BOG compressors.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号