首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >A PAPR Reduction Technique for Fast Touch Sensors Adopting a Multiple Frequency Driving Method on Large Display Panels
【2h】

A PAPR Reduction Technique for Fast Touch Sensors Adopting a Multiple Frequency Driving Method on Large Display Panels

机译:一种对大型显示面板上采用多频驱动方法的快速触摸传感器的PAPR还原技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The multiple frequency driving method (MFDM) capacitive touch system (CTS), which drives transmit (TX) electrodes in parallel, has been developed to improve the touch-sensitivity of large touch screens at high speed. However, when driving multiple TX electrodes at the same time, TX signals are merged through the touch panel, which results in increasing the peak-to-average power ratio (PAPR) of combined signals. Due to the high PAPR, the signal is distorted out of the power amplifier’s linear range, causing a touch malfunction. The MFDM CTS can avoid this problem by reducing the drive voltage or partially driving the TX electrodes in parallel. However, these methods cause a significant performance drop with respect to signal-to-noise ratio (SNR) in the MFDM systems. This paper proposes a stack method which reduces PAPR effectively without the performance degradation of MFDM and achieves real-time touch sensitivity in large display panels. The proposed method allocates a suitable phase for each TX electrode to reduce the peak power of combined signals. Instead of investigating all of the phases for the total number of TX electrodes, the optimal phase is estimated from the highest frequency to the lowest one and fixed one by one, which can reduce the required time to find a suitable phase considerably. As a result, it enables high-speed sensing of multi-touch on a large touch screen and effectively reduces PAPR to secure high signal-to-noise-ratio (SNR). Through experiments, it was verified that the proposed method in this paper has an SNR of 39.36 dB, achieving a gain of 19.35 and 5.98 dB compared to the existing touch system method and the algorithm used in the communication system, respectively.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号