首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Mobile LiDAR Scanning System Combined with Canopy Morphology Extracting Methods for Tree Crown Parameters Evaluation in Orchards
【2h】

Mobile LiDAR Scanning System Combined with Canopy Morphology Extracting Methods for Tree Crown Parameters Evaluation in Orchards

机译:移动利达扫描系统结合果园树冠参数评价的冠层形态提取方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To meet the demand for canopy morphological parameter measurements in orchards, a mobile scanning system is designed based on the 3D Simultaneous Localization and Mapping (SLAM) algorithm. The system uses a lightweight LiDAR-Inertial Measurement Unit (LiDAR-IMU) state estimator and a rotation-constrained optimization algorithm to reconstruct a point cloud map of the orchard. Then, Statistical Outlier Removal (SOR) filtering and European clustering algorithms are used to segment the orchard point cloud from which the ground information has been separated, and the k-nearest neighbour (KNN) search algorithm is used to restore the filtered point cloud. Finally, the height of the fruit trees and the volume of the canopy are obtained by the point cloud statistical method and the 3D alpha-shape algorithm. To verify the algorithm, tracked robots equipped with LIDAR and an IMU are used in a standardized orchard. Experiments show that the system in this paper can reconstruct the orchard point cloud environment with high accuracy and can obtain the point cloud information of all fruit trees in the orchard environment. The accuracy of point cloud-based segmentation of fruit trees in the orchard is 95.4%. The R2 and Root Mean Square Error (RMSE) values of crown height are 0.93682 and 0.04337, respectively, and the corresponding values of canopy volume are 0.8406 and 1.5738, respectively. In summary, this system achieves a good evaluation result of orchard crown information and has important application value in the intelligent measurement of fruit trees.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号