首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >SoC FPGA Accelerated Sub-Optimized Binary Fully Convolutional Neural Network for Robotic Floor Region Segmentation
【2h】

SoC FPGA Accelerated Sub-Optimized Binary Fully Convolutional Neural Network for Robotic Floor Region Segmentation

机译:SOC FPGA加速子优化二元完全卷积神经网络用于机器人楼层区分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this article, a new Binary Fully Convolutional Neural Network (B-FCN) based on Taguchi method sub-optimization for the segmentation of robotic floor regions, which can precisely distinguish floor regions in complex indoor environments is proposed. This methodology is quite suitable for robot vision in an embedded platform and the segmentation accuracy is up to 84.80% on average. A total of 6000 training datasets were used to improve the accuracy and reach convergence. On the other hand, to reach real-time computation, a PYNQ FPGA platform with heterogeneous computing acceleration was used to accelerate the proposed B-FCN architecture. Overall, robots would benefit from better navigation and route planning in our approach. The FPGA synthesis of our binarization method indicates an efficient reduction in the BRAM size to 0.5–1% and also GOPS/W is sufficiently high. Notably, the proposed faster architecture is ideal for low power embedded devices that need to solve the shortest path problem, path searching, and motion planning.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号