首页> 美国卫生研究院文献>Nanomaterials >Modeling of Al and Ga Droplet Nucleation during Droplet Epitaxy or Droplet Etching
【2h】

Modeling of Al and Ga Droplet Nucleation during Droplet Epitaxy or Droplet Etching

机译:液滴外延或液滴蚀刻期间Al和Ga液滴的建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The temperature dependent density of Al and Ga droplets deposited on AlGaAs with molecular beam epitaxy is studied theoretically. Such droplets are important for applications in quantum information technology and can be functionalized e.g., by droplet epitaxy or droplet etching for the self-assembled generation of quantum emitters. After an estimation based on a scaling analysis, the droplet densities are simulated using first a mean-field rate model and second a kinetic Monte Carlo (KMC) simulation basing on an atomistic representation of the mobile adatoms. The modeling of droplet nucleation with a very high surface activity of the adatoms and ultra-low droplet densities down to 5 × 106 cm−2 is highly demanding in particular for the KMC simulation. Both models consider two material related model parameters, the energy barrier ES for surface diffusion of free adatoms and the energy barrier EE for escape of atoms from droplets. The rate model quantitatively reproduces the droplet densities with ES = 0.19 eV, EE = 1.71 eV for Al droplets and ES = 0.115 eV for Ga droplets. For Ga, the values of EE are temperature dependent indicating the relevance of additional processes. Interestingly, the critical nucleus size depends on deposition time, which conflicts with the assumptions of the scaling model. Using a multiscale KMC algorithm to substantially shorten the computation times, Al droplets up to 460 °C on a 7500 × 7500 simulation field and Ga droplets up to 550 °C are simulated. The results show a very good agreement with the experiments using ES = 0.19 eV, EE = 1.44 eV for Al, and ES = 0.115 eV, EE = 1.24 eV (T≤ 300 °C) or EE = 1.24 + 0.06 (T[°C] − 300)/100 eV (T>300 °C) for Ga. The deviating EE is attributed to a re-nucleation effect that is not considered in the mean-field assumption of the rate model.
机译:从理论上研究了沉积在Algaas上的Al和Ga液滴的温度依赖性密度。这种液滴对于量子信息技术的应用很重要,并且可以通过液滴外延或液滴蚀刻来官能化,用于自组装的量子发射器。在基于缩放分析的估计之后,使用第一A平均场速率模型和第二动力学蒙特卡罗(KMC)模拟基于移动adatoms的原子表示来模拟液滴密度。液滴成核的建模与下降至5×106cm-2的吸附和超低液滴密度的非常高的表面活性,特别是对于KMC仿真特别苛刻。两种模型考虑两种材料相关的模型参数,用于自由adatoms的表面扩散的能量屏障ES和能量屏障EE从液滴中逸出原子。速率模型定量再现具有ES = 0.19eV的液滴密度,EE = 1.71 EV对于Al Droplet和ES = 0.115eV用于GA液滴。对于GA,EE的值是温度取决于指示附加过程的相关性。有趣的是,关键核尺寸取决于沉积时间,这与缩放模型的假设冲突。使用MultiScale KMC算法基本上缩短计算时间,在7500×7500仿真场上的AL液滴最高可达460°C,并模拟高达550°C的GA液滴。结果表明,使用ES = 0.19eV,EE = 1.44 EV,EE = 0.115eV,EE = 1.24eV(T≤300℃)或EE = 1.24 + 0.06(T [° C] - 300)/ 100eV(T> 300°C)用于GA。偏离EE归因于在速率模型的平均场假设中不考虑的重新成核效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号