首页> 美国卫生研究院文献>Nanomaterials >Pool Boiling of Nanofluids on Biphilic Surfaces: An Experimental and Numerical Study
【2h】

Pool Boiling of Nanofluids on Biphilic Surfaces: An Experimental and Numerical Study

机译:植物融合在双硅表面上的纳米流体:实验和数值研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study addresses the combination of customized surface modification with the use of nanofluids, to infer on its potential to enhance pool-boiling heat transfer. Hydrophilic surfaces patterned with superhydrophobic regions were developed and used as surface interfaces with different nanofluids (water with gold, silver, aluminum and alumina nanoparticles), in order to evaluate the effect of the nature and concentration of the nanoparticles in bubble dynamics and consequently in heat transfer processes. The main qualitative and quantitative analysis was based on extensive post-processing of synchronized high-speed and thermographic images. To study the nucleation of a single bubble in pool boiling condition, a numerical model was also implemented. The results show an evident benefit of using biphilic patterns with well-established distances between the superhydrophobic regions. This can be observed in the resulting plot of the dissipated heat flux for a biphilic pattern with seven superhydrophobic spots, δ = 1/d and an imposed heat flux of 2132 w/m2. In this case, the dissipated heat flux is almost constant (except in the instant t* ≈ 0.9 when it reaches a peak of 2400 W/m2), whilst when using only a single superhydrophobic spot, where the heat flux dissipation reaches the maximum shortly after the detachment of the bubble, dropping continuously until a new necking phase starts. The biphilic patterns also allow a controlled bubble coalescence, which promotes fluid convection at the hydrophilic spacing between the superhydrophobic regions, which clearly contributes to cool down the surface. This effect is noticeable in the case of employing the Ag 1 wt% nanofluid, with an imposed heat flux of 2132 W/m2, where the coalescence of the drops promotes a surface cooling, identified by a temperature drop of 0.7 °C in the hydrophilic areas. Those areas have an average temperature of 101.8 °C, whilst the average temperature of the superhydrophobic spots at coalescence time is of 102.9 °C. For low concentrations as the ones used in this work, the effect of the nanofluids was observed to play a minor role. This can be observed on the slight discrepancy of the heat dissipation decay that occurred in the necking stage of the bubbles for nanofluids with the same kind of nanoparticles and different concentration. For the Au 0.1 wt% nanofluid, a heat dissipation decay of 350 W/m2 was reported, whilst for the Au 0.5 wt% nanofluid, the same decay was only of 280 W/m2. The results of the numerical model concerning velocity fields indicated a sudden acceleration at the bubble detachment, as can be qualitatively analyzed in the thermographic images obtained in this work. Additionally, the temperature fields of the analyzed region present the same tendency as the experimental results.
机译:本研究解决了利用纳米流体的定制表面改性的组合,推断出其增强池沸腾热传递的潜力。用超疏水区图案化的亲水性表面和用作不同纳米流体的表面界面(用金,银,铝和氧化铝纳米粒子),以评估纳米颗粒在气泡动力学中的性质和浓度的影响,因此在热量中转移过程。主要的定性和定量分析是基于同步高速和热量摄像图像的广泛处理。为了研究池沸腾条件下单个泡沫的成核,还实施了数值模型。结果表明,在超疏水区之间使用具有良好距离的双硅图案的显着益处。这可以在由七个超疏水斑点的双硅图案的所得散热通量的所得型散热曲线图中观察到,Δ= 1 / d和2132W / m 2的施加热通量。在这种情况下,耗散的热通量几乎是恒定的(除了瞬间t*≈0.9之外,当它达到2400W / m 2的峰时),而仅使用单个超疏水斑点,其中热量耗散很快达到最大值在泡沫分离后,连续滴加直到新的缩放阶段开始。双硅图案还允许受控泡泡聚结,其促进超疏水区之间的亲水间隔内的流体对流,这显然有助于冷却表面。在采用Ag 1wt%纳米流体的情况下,这种效果是明显的,其具有2132W / m 2的施加热通量,其中下降的聚结促进了表面冷却,通过在亲水性中的0.7℃的温度下降鉴定地区。这些区域的平均温度为101.8°C,同时聚结时间的超疏水斑的平均温度为102.9℃。对于低浓度,作为在这项工作中使用的低浓度,观察到纳米流体的效果起着轻微的作用。这可以在散热衰减的轻微差异上观察到在纳米流体的气泡的接口阶段发生的散热衰减的轻微差异,其具有相同种类的纳米颗粒和不同的浓度。对于Au 0.1wt%纳米流体,报告了350w / m 2的散热衰减,而Au 0.5wt%纳米流体,相同的衰减仅为280w / m 2。关于速度场的数值模型的结果表明了气泡脱离的突然加速度,如在该工作中获得的热量图像中可以定性地分析。另外,分析区域的温度场呈现与实验结果相同的趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号