首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Ball Tracking and Trajectory Prediction for Table-Tennis Robots
【2h】

Ball Tracking and Trajectory Prediction for Table-Tennis Robots

机译:乒乓球机器人的球跟踪和轨迹预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sports robots have become a popular research topic in recent years. For table-tennis robots, ball tracking and trajectory prediction are the most important technologies. Several methods were developed in previous research efforts, and they can be divided into two categories: physical models and machine learning. The former use algorithms that consider gravity, air resistance, the Magnus effect, and elastic collision. However, estimating these external forces require high sampling frequencies that can only be achieved with high-efficiency imaging equipment. This study thus employed machine learning to learn the flight trajectories of ping-pong balls, which consist of two parabolic trajectories: one beginning at the serving point and ending at the landing point on the table, and the other beginning at the landing point and ending at the striking point of the robot. We established two artificial neural networks to learn these two trajectories. We conducted a simulation experiment using 200 real-world trajectories as training data. The mean errors of the proposed dual-network method and a single-network model were 39.6 mm and 42.9 mm, respectively. The results indicate that the prediction performance of the proposed dual-network method is better than that of the single-network approach. We also used the physical model to generate 330 trajectories for training and the simulation test results show that the trained model achieved a success rate of 97% out of 30 attempts, which was higher than the success rate of 70% obtained by the physical model. A physical experiment presented a mean error and standard deviation of 36.6 mm and 18.8 mm, respectively. The results also show that even without the time stamps, the proposed method maintains its prediction performance with the additional advantages of 15% fewer parameters in the overall network and 54% shorter training time.
机译:近年来,运动机器人已成为热门的研究话题。对于乒乓球机器人,球跟踪和轨迹预测是最重要的技术。在先前的研究工作中开发了几种方法,它们可以分为两类:物理模型和机器学习。前者使用考虑重力,空气阻力,马格努斯效应和弹性碰撞的算法。但是,估计这些外力需要高采样频率,而高采样频率只能通过高效成像设备来实现。因此,本研究使用机器学习来学习乒乓球的飞行轨迹,该轨迹由两个抛物线轨迹组成:一个开始于服务点并终止于桌子上的着陆点,而另一个则始于着陆点并终止于桌面在机器人的打击点。我们建立了两个人工神经网络来学习这两个轨迹。我们使用200条真实世界的轨迹作为训练数据进行了模拟实验。所提出的双网络方法和单网络模型的平均误差分别为39.6 mm和42.9 mm。结果表明,所提出的双网络方法的预测性能优于单网络方法。我们还使用物理模型生成了330条训练轨迹,仿真测试结果表明,经过训练的模型在30次尝试中均获得了97%的成功率,高于物理模型获得的70%的成功率。物理实验的平均误差和标准偏差分别为36.6 mm和18.8 mm。结果还表明,即使没有时间戳,该方法仍保持其预测性能,并具有以下优势:整个网络中的参数减少了15%,训练时间缩短了54%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号