首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Building a Compact Convolutional Neural Network for Embedded Intelligent Sensor Systems Using Group Sparsity and Knowledge Distillation
【2h】

Building a Compact Convolutional Neural Network for Embedded Intelligent Sensor Systems Using Group Sparsity and Knowledge Distillation

机译:使用组稀疏性和知识提取为嵌入式智能传感器系统构建紧凑的卷积神经网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As artificial intelligence (AI)- or deep-learning-based technologies become more popular, the main research interest in the field is not only on their accuracy, but also their efficiency, e.g., the ability to give immediate results on the users’ inputs. To achieve this, there have been many attempts to embed deep learning technology on intelligent sensors. However, there are still many obstacles in embedding a deep network in sensors with limited resources. Most importantly, there is an apparent trade-off between the complexity of a network and its processing time, and finding a structure with a better trade-off curve is vital for successful applications in intelligent sensors. In this paper, we propose two strategies for designing a compact deep network that maintains the required level of performance even after minimizing the computations. The first strategy is to automatically determine the number of parameters of a network by utilizing group sparsity and knowledge distillation (KD) in the training process. By doing so, KD can compensate for the possible losses in accuracy caused by enforcing sparsity. Nevertheless, a problem in applying the first strategy is the unclarity in determining the balance between the accuracy improvement due to KD and the parameter reduction by sparse regularization. To handle this balancing problem, we propose a second strategy: a feedback control mechanism based on the proportional control theory. The feedback control logic determines the amount of emphasis to be put on network sparsity during training and is controlled based on the comparative accuracy losses of the teacher and student models in the training. A surprising fact here is that this control scheme not only determines an appropriate trade-off point, but also improves the trade-off curve itself. The results of experiments on CIFAR-10, CIFAR-100, and ImageNet32 × 32 datasets show that the proposed method is effective in building a compact network while preventing performance degradation due to sparsity regularization much better than other baselines.
机译:随着基于人工智能(AI)或深度学习的技术变得越来越流行,该领域的主要研究兴趣不仅在于其准确性,还在于其效率,例如根据用户输入立即给出结果的能力。 。为了实现这一目标,已经进行了许多尝试将深度学习技术嵌入到智能传感器中。但是,在资源有限的传感器中嵌入深层网络仍然存在许多障碍。最重要的是,网络的复杂性与其处理时间之间存在明显的权衡,寻找具有更好权衡曲线的结构对于智能传感器的成功应用至关重要。在本文中,我们提出了两种设计紧凑型深度网络的策略,即使在最小化计算量的情况下,该网络仍可以保持所需的性能水平。第一种策略是在训练过程中利用群体稀疏性和知识提炼(KD)自动确定网络的参数数量。这样,KD可以补偿由于执行稀疏性而导致的精度可能损失。然而,应用第一种策略的问题是在确定由于KD引起的精度提高与通过稀疏正则化进行的参数减小之间的平衡时,尚不确定。为了解决这个平衡问题,我们提出了第二种策略:基于比例控制理论的反馈控制机制。反馈控制逻辑确定训练期间对网络稀疏性的重视程度,并根据训练中教师模型和学生模型的相对准确性损失进行控制。这里令人惊讶的事实是,该控制方案不仅确定了适当的折衷点,而且还改善了折衷曲线本身。在CIFAR-10,CIFAR-100和ImageNet32×32数据集上进行的实验结果表明,所提出的方法可有效构建紧凑的网络,同时防止因稀疏性正则化而导致的性能下降,其效果比其他基准要好得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号