首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >A Data-Driven Damage Identification Framework Based on Transmissibility Function Datasets and One-Dimensional Convolutional Neural Networks: Verification on a Structural Health Monitoring Benchmark Structure
【2h】

A Data-Driven Damage Identification Framework Based on Transmissibility Function Datasets and One-Dimensional Convolutional Neural Networks: Verification on a Structural Health Monitoring Benchmark Structure

机译:基于传递函数数据集和一维卷积神经网络的数据驱动型损伤识别框架:结构健康监测基准结构的验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Vibration-based data-driven structural damage identification methods have gained large popularity because of their independence of high-fidelity models of target systems. However, the effectiveness of existing methods is constrained by critical shortcomings. For example, the measured vibration responses may contain insufficient damage-sensitive features and suffer from high instability under the interference of random excitations. Moreover, the capability of conventional intelligent algorithms in damage feature extraction and noise influence suppression is limited. To address the above issues, a novel damage identification framework was established in this study by integrating massive datasets constructed by structural transmissibility functions (TFs) and a deep learning strategy based on one-dimensional convolutional neural networks (1D CNNs). The effectiveness and efficiency of the TF-1D CNN framework were verified using an American Society of Civil Engineers (ASCE) structural health monitoring benchmark structure, from which dynamic responses were captured, subject to white noise random excitations and a number of different damage scenarios. The damage identification accuracy of the framework was examined and compared with others by using different dataset types and intelligent algorithms. Specifically, compared with time series (TS) and fast Fourier transform (FFT)-based frequency-domain signals, the TF signals exhibited more significant damage-sensitive features and stronger stability under excitation interference. The utilization of 1D CNN, on the other hand, exhibited some unique advantages over other machine learning algorithms (e.g., traditional artificial neural networks (ANNs)), particularly in aspects of computation efficiency, generalization ability, and noise immunity when treating massive, high-dimensional datasets. The developed TF-1D CNN damage identification framework was demonstrated to have practical value in future applications.
机译:基于振动的数据驱动的结构损伤识别方法由于具有目标系统的高保真模型的独立性而受到广泛欢迎。但是,现有方法的有效性受到严重缺陷的限制。例如,所测得的振动响应可能包含不足的损伤敏感特征,并在随机激励的干扰下具有高度的不稳定性。而且,传统的智能算法在损伤特征提取和噪声影响抑制方面的能力受到限制。为了解决上述问题,本研究通过整合由结构传递函数(TF)构建的大量数据集和基于一维卷积神经网络(1D CNN)的深度学习策略,建立了一种新颖的损伤识别框架。 TF-1D CNN框架的有效性和效率已使用美国土木工程师学会(ASCE)的结构健康监测基准结构进行了验证,并从中捕获了动态响应,白噪声随机激励和多种不同的损坏情况。通过使用不同的数据集类型和智能算法,检查并比较了框架的损伤识别准确性。具体而言,与基于时间序列(TS)和基于快速傅立叶变换(FFT)的频域信号相比,TF信号在激励干扰下具有更显着的损伤敏感特征和更强的稳定性。另一方面,一维CNN的使用相对于其他机器学习算法(例如,传统的人工神经网络(ANN))表现出一些独特的优势,特别是在处理大规模,高阶时的计算效率,泛化能力和抗噪性方面维数据集。事实证明,开发的TF-1D CNN损伤识别框架在未来的应用中具有实用价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号