首页> 美国卫生研究院文献>Pharmaceutics >Application of Multiple Linear Regression and Artificial Neural Networks for the Prediction of the Packing and Capsule Filling Performance of Coated and Plain Pellets Differing in Density and Size
【2h】

Application of Multiple Linear Regression and Artificial Neural Networks for the Prediction of the Packing and Capsule Filling Performance of Coated and Plain Pellets Differing in Density and Size

机译:多元线性回归和人工神经网络在密度和尺寸不同的包衣和普通颗粒的包装和胶囊填充性能预测中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Plain or coated pellets of different densities 1.45, 2.53, and 3.61 g/cc in two size ranges, small (380–550 μm) and large (700–1200 μm) (stereoscope/image analysis), were prepared according to experimental design using extrusion/spheronization. Multiple linear regression (MLR) and artificial neural networks (ANNs) were used to predict packing indices and capsule filling performance from the “apparent” pellet density (helium pycnometry). The dynamic packing of the pellets in tapped volumetric glass cylinders was evaluated using Kawakita’s parameter and the angle of internal flow . The capsule filling was evaluated as maximum fill weight ( ) and fill weight variation ( ) using a semi-automatic machine that simulated filling with vibrating plate systems. The pellet density influenced the packing parameters and as the main effect and the and as statistical interactions with the coating. The pellet size and coating also displayed interacting effects on and . After coating, both small and large pellets behaved the same, demonstrating smooth filling and a low fill weight variation. Furthermore, none of the packing indices could predict the fill weight variation for the studied pellets, suggesting that the filling and packing of capsules with free-flowing pellets is influenced by details that were not accounted for in the tapping experiments. A prediction could be made by the application of MLR and ANNs. The former gave good predictions for the bulk/tap densities, and (R-squared of experimental vs. theoretical data >0.951). A comparison of the fitting models showed that a feed-forward backpropagation ANN model with six hidden units was superior to MLR in generalizing ability and prediction accuracy. The simplification of the ANN via magnitude-based pruning (MBP) and optimal brain damage (OBD), showed good data fitting, and therefore the derived ANN model can be simplified while maintaining predictability. These findings emphasize the importance of pellet density in the overall capsule filling process and the necessity to implement MLR/ANN into the development of pellet capsule filling operations.
机译:根据实验设计,使用以下两种方法制备了不同密度的普通或包衣药丸:两种尺寸范围(小(380–550μm)和大(700–1200μm)(立体镜/图像分析))的密度分别为1.45、2.53和3.61 g / cc。挤出/滚圆。多元线性回归(MLR)和人工神经网络(ANN)用于根据“表观”颗粒密度(氦比重瓶)预测填充指数和胶囊填充性能。利用Kawakita的参数和内部流动角度评估了在带螺纹的容积式玻璃圆筒中颗粒的动态堆积。使用半自动机器,通过振动板系统模拟填充,将胶囊填充评估为最大填充重量()和填充重量变化()。粒料密度影响填充参数,并作为主要影响以及与涂层的统计相互作用。颗粒大小和包衣也对 和。包衣后,小颗粒和大颗粒的表现都相同,表明填充平滑,填充重量变化小。此外,没有一种填充指数可以预测所研究的颗粒的填充重量变化,这表明自由流动的颗粒对胶囊的填充和填充受到攻丝实验中未考虑的细节的影响。可以通过使用MLR和ANN做出预测。前者对堆积/堆积密度给出了良好的预测,并且(实验数据与理论数据的R平方> 0.951)。拟合模型的比较表明,具有六个隐藏单元的前馈反向传播ANN模型在泛化能力和预测准确性上均优于MLR。通过基于幅度的修剪(MBP)和最佳脑损伤(OBD)的ANN简化显示了良好的数据拟合,因此可以简化导出的ANN模型,同时保持可预测性。这些发现强调了颗粒密度在整个胶囊填充过程中的重要性,以及在颗粒胶囊填充操作的发展中实施MLR / ANN的必要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号