首页> 美国卫生研究院文献>Nanomaterials >Facile Construction of All-Solid-State Z-Scheme g-C3N4/TiO2 Thin Film for the Efficient Visible-Light Degradation of Organic Pollutant
【2h】

Facile Construction of All-Solid-State Z-Scheme g-C3N4/TiO2 Thin Film for the Efficient Visible-Light Degradation of Organic Pollutant

机译:用于高效可见光降解有机污染物的全固态Z方案g-C3N4 / TiO2薄膜的简便构建

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The increasing discharge of dyes and antibiotic pollutants in water has brought serious environmental problems. However, it is difficult to remove such pollutants effectively by traditional sewage treatment technologies. Semiconductor photocatalysis is a new environment-friendly technique and is widely used in aqueous pollution control. TiO is one of the most investigated photocatalysts; however, it still faces the main drawbacks of a poor visible-light response and a low charge-separation efficiency. Moreover, powder photocatalyst is difficult to be recovered, which is another obstacle limiting the practical application. In this article, g-C N /TiO heterojunction is simply immobilized on a glass substrate to form an all-solid-state Z-scheme heterojunction. The obtained thin-film photocatalyst was characterized and applied in the visible-light photodegradation of colored rhodamine B and tetracycline hydrochloride. The photocatalytic performance is related to the deposited layers, and the sample with five layers shows the best photocatalytic efficiency. The thin-film photocatalyst is easy to be recovered with stability. The active component responsible for the photodegradation is identified and a Z-scheme mechanism is proposed.
机译:水中染料和抗生素污染物排放的增加带来了严重的环境问题。但是,通过传统的污水处理技术很难有效地去除这种污染物。半导体光催化是一种新的环境友好技术,已广泛用于水污染控制。 TiO是研究最多的光催化剂之一。然而,它仍然面临可见光响应差和电荷分离效率低的主要缺点。而且,粉末光催化剂难以回收,这是限制实际应用的另一个障碍。在本文中,将g-C N / TiO异质结简单地固定在玻璃基板上即可形成全固态Z型异质结。表征所得的薄膜光催化剂,并将其应用于有色罗丹明B和盐酸四环素的可见光降解中。光催化性能与沉积层有关,具有五层的样品显示出最佳的光催化效率。薄膜光催化剂易于稳定地回收。确定了负责光降解的活性成分,并提出了Z方案机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号