首页> 美国卫生研究院文献>Molecules >From the Kinetic Theory of Gases to the Kinetics of Rate Processes: On the Verge of the Thermodynamic and Kinetic Limits
【2h】

From the Kinetic Theory of Gases to the Kinetics of Rate Processes: On the Verge of the Thermodynamic and Kinetic Limits

机译:从气体动力学理论到速率过程动力学:热力学和动力学极限的边缘

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A variety of current experiments and molecular dynamics computations are expanding our understanding of rate processes occurring in extreme environments, especially at low temperatures, where deviations from linearity of Arrhenius plots are revealed. The thermodynamic behavior of molecular systems is determined at a specific temperature within conditions on large volume and number of particles at a given density (the thermodynamic limit): on the other side, kinetic features are intuitively perceived as defined in a range between the extreme temperatures, which limit the existence of each specific phase. In this paper, extending the statistical mechanics approach due to Fowler and collaborators, ensembles and partition functions are defined to evaluate initial state averages and activation energies involved in the kinetics of rate processes. A key step is delayed access to the thermodynamic limit when conditions on a large volume and number of particles are not fulfilled: the involved mathematical analysis requires consideration of the role of the succession for the exponential function due to Euler, precursor to the Poisson and Boltzmann classical distributions, recently discussed. Arguments are presented to demonstrate that a universal feature emerges: Convex Arrhenius plots ( -Arrhenius behavior) as temperature decreases are amply documented in progressively wider contexts, such as viscosity and glass transitions, biological processes, enzymatic catalysis, plasma catalysis, geochemical fluidity, and chemical reactions involving collective phenomena. The treatment expands the classical Tolman’s theorem formulated quantally by Fowler and Guggenheim: the activation energy of processes is related to the averages of microscopic energies. We previously introduced the concept of “transitivity”, a function that compactly accounts for the development of heuristic formulas and suggests the search for universal behavior. The velocity distribution function far from the thermodynamic limit is illustrated; the fraction of molecules with energy in excess of a certain threshold for the description of the kinetics of low-temperature transitions and of non-equilibrium reaction rates is derived. Uniform extension beyond the classical case to include quantum tunneling (leading to the concavity of plots, -Arrhenius behavior) and to Fermi and Bose statistics has been considered elsewhere. A companion paper presents a computational code permitting applications to a variety of phenomena and provides further examples.
机译:当前的各种实验和分子动力学计算正在扩展我们对极端环境下发生的速率过程的理解,尤其是在低温下,在低温下,与Arrhenius图的线性存在偏差。分子系统的热力学行为是在给定密度(热力学极限)下在大体积和大量粒子的条件下,在特定温度下确定的;另一方面,直观地认为动力学特征是在极端温度之间的范围内定义的,这限制了每个特定阶段的存在。在本文中,由于Fowler和合作者而扩展了统计力学方法,定义了合奏和分区函数以评估速率过程动力学中涉及的初始状态平均值和活化能。关键步骤是当无法满足大体积和大量粒子的条件时延迟进入热力学极限:涉及的数学分析需要考虑由于泊松和玻尔兹曼的前身欧拉所引起的指数函数的继承作用。经典分布,最近进行了讨论。提出了论据以证明出现了通用特征:随着温度的降低,凸Arrhenius曲线(-Arrhenius行为)在越来越宽泛的环境中得到了充分记录,例如粘度和玻璃化转变,生物过程,酶催化,等离子体催化,地球化学流动性和涉及集体现象的化学反应。这种处理扩展了由Fowler和Guggenheim量化定义的经典Tolman定理:过程的活化能与微观能量的平均值有关。我们之前曾介绍过“传递性”的概念,该函数紧凑地说明了启发式公式的发展,并提出了寻求普遍行为的建议。图示了远离热力学极限的速度分布函数;推导了能量超过一定阈值的分子分数,用于描述低温转变和非平衡反应速率的动力学。均匀扩展超出了经典案例,包括量子隧穿(导致图的凹性,-阿累尼乌斯行为)以及费米和玻色统计。随附的论文介绍了允许应用于多种现象的计算代码,并提供了更多示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号