首页> 美国卫生研究院文献>MicrobiologyOpen >DNA stable‐isotope probing reveals potential key players for microbial decomposition and degradation of diatom‐derived marine particulate matter
【2h】

DNA stable‐isotope probing reveals potential key players for microbial decomposition and degradation of diatom‐derived marine particulate matter

机译:DNA稳定同位素探测揭示了硅藻衍生的海洋微粒物质在微生物分解和降解中的潜在关键参与者

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microbially mediated decomposition of particulate organic carbon (POC) is a central component of the oceanic carbon cycle, controlling the flux of organic carbon from the surface ocean to the deep ocean. Yet, the specific microbial taxa responsible for POC decomposition and degradation in the deep ocean are still unknown. To target the active microbial lineages involved in these processes, C‐labeled particulate organic matter (POM) was used as a substrate to incubate particle‐attached (PAM) and free‐living microbial (FLM) assemblages from the epi‐ and bathypelagic zones of the New Britain Trench (NBT). By combining DNA stable‐isotope probing and Illumina Miseq high‐throughput sequencing of bacterial 16S rRNA gene, we identified 14 active bacterial taxonomic groups that implicated in the decomposition of C‐labeled POM at low and high pressures under the temperature of 15°C. Our results show that both PAM and FLM were able to decompose POC and assimilate the released DOC. However, similar bacterial taxa in both the PAM and FLM assemblages were involved in POC decomposition and DOC degradation, suggesting the decoupling between microbial lifestyles and ecological functions. Microbial decomposition of POC and degradation of DOC were accomplished primarily by particle‐attached bacteria at atmospheric pressure and by free‐living bacteria at high pressures. Overall, the POC degradation rates were higher at atmospheric pressure (0.1 MPa) than at high pressures (20 and 40 MPa) under 15°C. Our results provide direct evidence linking the specific particle‐attached and free‐living bacterial lineages to decomposition and degradation of diatomic detritus at low and high pressures and identified the potential mediators of POC fluxes in the epi‐ and bathypelagic zones.
机译:微生物介导的有机碳颗粒分解(POC)是海洋碳循环的主要组成部分,控制着有机碳从表层海洋到深海的通量。但是,负责深海中POC分解和降解的特定微生物分类群仍然未知。为了针对这些过程中涉及的活性微生物谱系,使用C标记的颗粒有机物(POM)作为底物,以孵化来自上皮和深水上带的颗粒附着(PAM)和自由生活微生物(FLM)组合。新不列颠海沟(NBT)。通过结合DNA稳定同位素探测和细菌16S rRNA基因的Illumina Miseq高通量测序,我们鉴定了14个活跃的细菌分类学基团,这些基团与C标记的POM在15°C的低压和高压下分解有关。我们的结果表明,PAM和FLM都能够分解POC并吸收释放的DOC。然而,PAM和FLM组合中相似的细菌类群都参与POC分解和DOC降解,这表明微生物生活方式与生态功能之间存在脱钩。 POC的微生物分解和DOC的降解主要通过在大气压下附着有颗粒的细菌和在高压下通过自由生存的细菌来完成。总体而言,在15°C下,大气压(0.1MPa)下的POC降解速率高于高压(20和40MPa)下的POC降解速率。我们的结果提供了直接的证据,证明在低压和高压下,特定的附着有颗粒和自由活动的细菌谱系与双原子碎屑的分解和降解有关,并确定了上,深水带中POC通量的潜在介质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号