首页> 美国卫生研究院文献>Journal of Medical Imaging >Convolutional neural network initialized active contour model with adaptive ellipse fitting for nuclear segmentation on breast histopathological images
【2h】

Convolutional neural network initialized active contour model with adaptive ellipse fitting for nuclear segmentation on breast histopathological images

机译:卷积神经网络用自适应椭圆拟合初始化主动轮廓模型以在乳腺组织病理学图像上进行核分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Automated detection and segmentation of nuclei from high-resolution histopathological images is a challenging problem owing to the size and complexity of digitized histopathologic images. In the context of breast cancer, the modified Bloom–Richardson Grading system is highly correlated with the morphological and topological nuclear features are highly correlated with Modified Bloom–Richardson grading. Therefore, to develop a computer-aided prognosis system, automated detection and segmentation of nuclei are critical prerequisite steps. We present a method for automated detection and segmentation of breast cancer nuclei named a convolutional neural network initialized active contour model with adaptive ellipse fitting (CoNNACaeF). The CoNNACaeF model is able to detect and segment nuclei simultaneously, which consist of three different modules: convolutional neural network (CNN) for accurate nuclei detection, (2) region-based active contour (RAC) model for subsequent nuclear segmentation based on the initial CNN-based detection of nuclear patches, and (3) adaptive ellipse fitting for overlapping solution of clumped nuclear regions. The performance of the CoNNACaeF model is evaluated on three different breast histological data sets, comprising a total of 257 H&E-stained images. The model is shown to have improved detection accuracy of F-measure 80.18%, 85.71%, and 80.36% and average area under precision-recall curves (AveP) 77%, 82%, and 74% on a total of 3 million nuclei from 204 whole slide images from three different datasets. Additionally, CoNNACaeF yielded an F-measure at 74.01% and 85.36%, respectively, for two different breast cancer datasets. The CoNNACaeF model also outperformed the three other state-of-the-art nuclear detection and segmentation approaches, which are blue ratio initialized local region active contour, iterative radial voting initialized local region active contour, and maximally stable extremal region initialized local region active contour models.
机译:由于数字化组织病理学图像的大小和复杂性,从高分辨率组织病理学图像中自动检测和分割核是一个具有挑战性的问题。在乳腺癌的背景下,改良的Bloom-Richardson分级系统与形态和拓扑核特征高度相关,与修正的Bloom-Richardson分级高度相关。因此,要开发计算机辅助的预后系统,自动检测和分割核是关键的前提步骤。我们提出了一种自动检测和分割乳腺癌细胞核的方法,该方法称为卷积神经网络,通过自适应椭圆拟合(CoNNACaeF)初始化了主动轮廓模型。 CoNNACaeF模型能够同时检测和分割核,它由三个不同的模块组成:用于精确核检测的卷积神经网络(CNN);(2)基于初始区域进行后续核分割的基于区域的活动轮廓(RAC)模型基于CNN的核斑块检测,以及(3)块状核区域重叠解决方案的自适应椭圆拟合。在三个不同的乳房组织学数据集(包括257个H&E染色图像)上评估了CoNNACaeF模型的性能。结果表明,该模型在300万个核中的F量度检测精度提高了80.18%,85.71%和80.36%,平均精确召回曲线(AveP)下的平均面积分别为77%,82%和74%。来自三个不同数据集的204张完整幻灯片图像。此外,对于两个不同的乳腺癌数据集,CoNNACaeF的F值分别为74.01%和85.36%。 CoNNACaeF模型还优于其他三种最新的核检测和分割方法,即蓝色比率初始化的局部区域活动轮廓,迭代径向投票初始化的局部区域活动轮廓和最大稳定的末梢区域初始化的局部活动轮廓楷模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号