首页> 美国卫生研究院文献>Journal of Functional Biomaterials >Phosphoserine Functionalized Cements Preserve Metastable Phases and Reprecipitate Octacalcium Phosphate Hydroxyapatite Dicalcium Phosphate and Amorphous Calcium Phosphate during Degradation In Vitro
【2h】

Phosphoserine Functionalized Cements Preserve Metastable Phases and Reprecipitate Octacalcium Phosphate Hydroxyapatite Dicalcium Phosphate and Amorphous Calcium Phosphate during Degradation In Vitro

机译:磷酸丝氨酸官能化的水泥保留了亚稳态并在降解过程中(体外)沉淀了八磷酸钙羟基磷灰石磷酸二钙和无定形磷酸钙。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Phosphoserine modified cements (PMC) exhibit unique properties, including strong adhesion to tissues and biomaterials. While TTCP-PMCs remodel into bone in vivo, little is known regarding the bioactivity and physiochemical changes that occur during resorption. In the present study, changes in the mechanical strength and composition were evaluated for 28 days, for three formulations of αTCP based PMCs. PMCs were significantly stronger than unmodified cement (38–49 MPa vs. 10 MPa). Inclusion of wollastonite in PMCs appeared to accelerate the conversion to hydroxyapatite, coincident with slight decrease in strength. In non-wollastonite PMCs the initial compressive strength did not change after 28 days in PBS ( > 0.99). Dissolution/degradation of PMC was evaluated in acidic (pH 2.7, pH 4.0), and supersaturated fluids (simulated body fluid (SBF)). PMCs exhibited comparable mass loss (<15%) after 14 days, regardless of pH and ionic concentration. Electron microscopy, infrared spectroscopy, and X-ray analysis revealed that significant amounts of brushite, octacalcium phosphate, and hydroxyapatite reprecipitated, following dissolution in acidic conditions (pH 2.7), while amorphous calcium phosphate formed in SBF. In conclusion, PMC surfaces remodel into metastable precursors to hydroxyapatite, in both acidic and neutral environments. By tuning the composition of PMCs, durable strength in fluids, and rapid transformation can be obtained.
机译:磷酸丝氨酸改性的水泥(PMC)具有独特的性能,包括对组织和生物材料的强粘性。尽管TTCP-PMC在体内重塑为骨骼,但对于吸收过程中发生的生物活性和理化变化知之甚少。在本研究中,针对基于αTCP的PMC的三种配方,评估了28天的机械强度和组成的变化。 PMC比未改性的水泥强得多(38-49 MPa对10 MPa)。 PMC中加入硅灰石似乎会加速向羟基磷灰石的转化,同时强度会略有下降。在非硅灰石PMC中,在PBS中放置28天后,其初始抗压强度没有变化(> 0.99)。在酸性(pH 2.7,pH 4.0)和过饱和液体(模拟体液(SBF))中评估了PMC的溶解/降解。不管pH和离子浓度如何,PMC在14天后均表现出可观的质量损失(<15%)。电子显微镜,红外光谱和X射线分析表明,在酸性条件下(pH 2.7)溶解后,大量的透钙磷石,磷酸八钙和羟基磷灰石重新沉淀,而无定形磷酸钙则在SBF中形成。总之,在酸性和中性环境下,PMC表面均会重塑为羟基磷灰石的亚稳态前体。通过调节PMC的成分,可以在流体中获得持久的强度,并且可以快速转变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号