首页> 美国卫生研究院文献>Evolution Letters >Genetic architecture constrains exploitation of siderophore cooperation in the bacterium Burkholderia cenocepacia
【2h】

Genetic architecture constrains exploitation of siderophore cooperation in the bacterium Burkholderia cenocepacia

机译:遗传结构限制了细菌伯克霍尔德氏菌细菌中铁载体合作的利用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Explaining how cooperation can persist in the presence of cheaters, exploiting the cooperative acts, is a challenge for evolutionary biology. Microbial systems have proved extremely useful to test evolutionary theory and identify mechanisms maintaining cooperation. One of the most widely studied system is the secretion and sharing of iron‐scavenging siderophores by bacteria, with many insights gained from this system now being considered as hallmarks of bacterial cooperation. Here, we introduce siderophore secretion by the bacterium H111 as a novel parallel study system, and show that this system behaves differently. For ornibactin, the main siderophore of this species, we discovered a novel mechanism of how cheating can be prevented. Particularly, we found that secreted ornibactin cannot be exploited by ornibactin‐defective mutants because ornibactin receptor and synthesis genes are co‐expressed from the same operon, such that disruptive mutations in synthesis genes compromise receptor availability required for siderophore uptake and cheating. For pyochelin, the secondary siderophore of this species, we found that cheating was possible, but the relative success of cheaters was positive frequency dependent, thus diametrically opposite to the and other microbial systems. Altogether, our results highlight that expanding our repertoire of microbial study systems leads to new discoveries and suggest that there is an enormous diversity of social interactions out there in nature, and we might have only looked at the tip of the iceberg so far.
机译:解释如何在作弊者面前保持合作,利用合作行为是进化生物学面临的挑战。事实证明,微生物系统对于测试进化论和确定维持合作的机制非常有用。细菌对铁清除铁载体的分泌和共享是研究最广泛的系统之一,从该系统获得的许多见解现在被认为是细菌合作的标志。在这里,我们介绍了细菌H111的铁载体分泌作为一种新型并行研究系统,并表明该系统的行为有所不同。对于鸟氨酸,该物种的主要铁载体,我们发现了如何防止欺诈的新机制。特别是,我们发现分泌的鸟氨酸不能被鸟氨酸缺陷型突变体利用,因为鸟氨酸受体和合成基因是在同一操纵子中共表达的,因此合成基因中的破坏性突变会损害铁载体吸收和作弊所需的受体可用性。对于该物种的次生铁载体泛铁蛋白,我们发现作弊是可能的,但是作弊者的相对成功是正频率依赖性的,因此与微生物系统和其他微生物系统截然相反。总而言之,我们的结果表明,扩大我们的微生物研究系统范围会带来新的发现,并表明自然界中存在着巨大的社会互动多样性,而到目前为止,我们可能只看过冰山一角。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号