首页> 美国卫生研究院文献>Advanced Science >Microfluidic‐Architected Nanoarrays/Porous Core–Shell Fibers toward Robust Micro‐Energy‐Storage
【2h】

Microfluidic‐Architected Nanoarrays/Porous Core–Shell Fibers toward Robust Micro‐Energy‐Storage

机译:微流控结构的纳米阵列/多孔核壳光纤可实现稳健的微能存储

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Methods enabling the controllable fabrication of orderly structural and active nanomaterials, along with high‐speed ionic pathways for charge migration and storage are highly fundamental in fiber‐shaped micro‐supercapacitors (MSCs). However, due to fiber‐electrodes with compact internal microstructure and less porosity, MSCs usually display a low energy density. Here, an innovative microfluidic strategy is proposed to design ordered porous and anisotropic core–shell fibers based on nickel oxide arrays/graphene nanomaterials. Owing to the homogeneous microchannels reaction, the graphene core maintains a uniformly anisotropic porous structure, and the nickel oxide shell keeps steadily vertically aligned nanosheets. The MSC presents an ultrahigh energy density (120.3 µWh cm ) and large specific capacitance (605.9 mF cm ). This higher performance originates from the microfluidic‐architected core–shell fiber with abundant ionic channels (plentiful micro‐/mesopores), large specific‐surface‐area (425.6 m g ), higher electrical conductivity (176.6 S cm ), and sufficient redox activity, facilitating ions with quicker diffusion and greater accumulation. Considering those outstanding properties, a wearable self‐powered system, converting and storing solar energy into electric energy, is designed to light up displays. This microfluidic strategy offers an effective way to design new structural materials, which will advance the development of next‐generation wearable/smart industries.
机译:在纤维状微型超级电容器(MSC)中,可控地制造有序结构和活性纳米材料的方法以及用于电荷迁移和存储的高速离子途径是可控的。然而,由于纤维电极内部结构紧凑,孔隙率较低,因此MSC通常显示出较低的能量密度。在这里,提出了一种创新的微流体策略,以基于氧化镍阵列/石墨烯纳米材料的有序多孔和各向异性核-壳纤维设计。由于均匀的微通道反应,石墨烯核保持均匀的各向异性多孔结构,并且氧化镍壳保持稳定的垂直排列的纳米片。 MSC具有超高的能量密度(120.3 µWh cm)和大的比电容(605.9 mF cm)。更高的性能源于具有丰富离子通道(大量微/中孔),较大的比表面积(425.6 mg),较高的电导率(176.6 S cm)和足够的氧化还原活性的微流控结构的核壳纤维,促进离子的扩散和积累。考虑到这些出色的性能,可穿戴式自供电系统将太阳能转换并存储为电能,旨在点亮显示屏。这种微流体策略为设计新的结构材料提供了一种有效的方法,这将推动下一代可穿戴/智能行业的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号