首页> 美国卫生研究院文献>Advanced Science >Formation of Polarized Functional Artificial Cells from Compartmentalized Droplet Networks and Nanomaterials Using One‐Step Dual‐Material 3D‐Printed Microfluidics
【2h】

Formation of Polarized Functional Artificial Cells from Compartmentalized Droplet Networks and Nanomaterials Using One‐Step Dual‐Material 3D‐Printed Microfluidics

机译:使用一步双材料3D打印微流体技术从分隔的液滴网络和纳米材料形成极化的功能性人造细胞

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The bottom‐up construction of synthetic cells with user‐defined chemical organization holds considerable promise in the creation of bioinspired materials. Complex emulsions, droplet networks, and nested vesicles all represent platforms for the engineering of segregated chemistries with controlled communication, analogous to biological cells. Microfluidic manufacture of such droplet‐based materials typically results in radial or axisymmetric structures. In contrast, biological cells frequently display chemical polarity or gradients, which enable the determination of directionality, and inform higher‐order interactions. Here, a dual‐material, 3D‐printing methodology to produce microfluidic architectures that enable the construction of functional, asymmetric, hierarchical, emulsion‐based artificial cellular chassis is developed. These materials incorporate droplet networks, lipid membranes, and nanoparticle components. Microfluidic 3D‐channel arrangements enable symmetry‐breaking and the spatial patterning of droplet hierarchies. This approach can produce internal gradients and hemispherically patterned, multilayered shells alongside chemical compartmentalization. Such organization enables incorporation of organic and inorganic components, including lipid bilayers, within the same entity. In this way, functional polarization, that imparts individual and collective directionality on the resulting artificial cells, is demonstrated. This approach enables exploitation of polarity and asymmetry, in conjunction with compartmentalized and networked chemistry, in single and higher‐order organized structures, thereby increasing the palette of functionality in artificial cellular materials.
机译:具有用户定义的化学组织的自下而上的合成细胞结构在创造受生物启发的材料方面具有广阔的前景。复杂的乳剂,液滴网络和巢状囊泡均代表了与生物细胞类似的,工程化的,可控的通讯化学分离平台。此类基于液滴的材料的微流体制造通常会导致径向或轴对称结构。相比之下,生物细胞经常显示化学极性或梯度,从而可以确定方向性,并告知更高级别的相互作用。在这里,开发了一种双材料,3D打印方法来产生微流体架构,从而能够构建功能性,不对称,分层,基于乳液的人造细胞底盘。这些材料包含液滴网络,脂质膜和纳米颗粒成分。微流体3D通道排列可实现对称性破坏和液滴层次结构的空间图案化。这种方法可以产生内部梯度和半球形图案化的多层壳,同时进行化学隔离。这样的组织能够在同一实体内掺入有机和无机成分,包括脂质双层。以这种方式,证明了功能极化,其在所得人造细胞上赋予了个体和集体的方向性。这种方法可以利用极性和不对称性,以及在单个和更高阶的组织结构中结合间隔化和网络化化学,从而增加了人造细胞材料的功能调色板。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号