首页> 美国卫生研究院文献>other >Optimal Drug Cocktail Design: Methods for Targeting Molecular Ensembles and Insights From Theoretical Model Systems
【2h】

Optimal Drug Cocktail Design: Methods for Targeting Molecular Ensembles and Insights From Theoretical Model Systems

机译:最佳药物鸡尾酒设计:靶向分子集合的方法和理论模型系统的启示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Drug resistance is a significant obstacle in the effective treatment of diseases with rapidly mutating targets, such as AIDS, malaria, and certain forms of cancer. Such targets are remarkably efficient at exploring the space of functional mutants and at evolving to evade drug binding while still maintaining their biological role. To overcome this challenge, drug regimens must be active against potential target variants. Such a goal may be accomplished by one drug molecule that recognizes multiple variants, or by a drug “cocktail” — a small collection of drug molecules that collectively binds all desired variants. Ideally, one wants the smallest cocktail possible due to the potential for increased toxicity with each additional drug. Therefore, the task of designing a regimen for multiple target variants can be framed as an optimization problem — find the smallest collection of molecules that together “covers” the relevant target variants. In this work, we formulate and apply this optimization framework to theoretical model target ensembles. These results are analyzed to develop an understanding of how the physical properties of a target ensemble relate to the properties of the optimal cocktail. We focus on electrostatic variation within target ensembles, as it is one important mechanism by which drug resistance is achieved. Using integer programming, we systematically designed optimal cocktails to cover model target ensembles. We found that certain drug molecules covered much larger regions of target space than others, a phenomenon explained by theory grounded in continuum electrostatics. Molecules within optimal cocktails were often dissimilar, such that each drug was responsible for binding variants with a certain electrostatic property in common. On average, the number of molecules in the optimal cocktails correlated with the number of variants, the differences in the variants’ electrostatic properties at the binding interface, and the level of binding affinity desired. We also treated cases in which a subset of target variants was to be avoided, modeling the common challenge of closely related host molecules that may be implicated in drug toxicity. Such decoys generally increased the size of the required cocktail and more often resulted in infeasible optimizations. Taken together, this work provides practical optimization methods for design of drug cocktails and a theoretical, physics-based framework through which useful insights can be achieved.
机译:耐药性是有效治疗具有快速变异目标的疾病(例如艾滋病,疟疾和某些形式的癌症)的重要障碍。这样的靶标在探索功能性突变体的空间和进化为逃避药物结合同时仍保持其生物学作用方面非常有效。为了克服这一挑战,药物治疗方案必须对潜在的目标变体有效。可以通过识别多个变体的一个药物分子或通过药物“鸡尾酒”(一小部分共同结合所有所需变体的药物分子集合)来实现这一目标。理想情况下,由于每种其他药物都有可能增加毒性,因此人们希望尽可能减少鸡尾酒。因此,为多个目标变体设计方案的任务可以被视为一个优化问题-找到一起“覆盖”相关目标变体的最小分子集合。在这项工作中,我们制定了此优化框架并将其应用于理论模型目标合奏。分析这些结果以加深对目标合奏的物理属性与最佳鸡尾酒的属性之间的关系的了解。我们关注目标集合体内的静电变化,因为它是实现耐药性的重要机制之一。使用整数编程,我们系统地设计了最佳鸡尾酒,以涵盖模型目标合奏。我们发现某些药物分子比其他药物分子覆盖更大的目标空间区域,这一现象由理论解释为基于连续静电学。最佳混合物中的分子通常是不同的,因此每种药物都负责结合具有共同静电特性的变异体。平均而言,最佳混合物中的分子数量与变体数量,变体在结合界面的静电特性差异以及所需的结合亲和力水平相关。我们还处理了避免靶变体子集的情况,模拟了可能与药物毒性有关的紧密相关宿主分子的共同挑战。这样的诱饵通常会增加所需鸡尾酒的大小,并且更经常导致不可行的优化。两者合计,这项工作为药物鸡尾酒的设计提供了实用的优化方法,并提供了一种基于理论的,基于物理学的框架,通过该框架可以获得有用的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号