首页> 美国卫生研究院文献>other >Correlation and Characterization of 3D Morphological Dependent Localized Surface Plasmon Resonance Spectra of Single Silver Nanoparticles Using Dark-field Optical Microscopy and Spectroscopy and AFM
【2h】

Correlation and Characterization of 3D Morphological Dependent Localized Surface Plasmon Resonance Spectra of Single Silver Nanoparticles Using Dark-field Optical Microscopy and Spectroscopy and AFM

机译:用暗场光学显微镜和光谱法和AFM对单银纳米粒子3D形态依赖性局部等离子体共振光谱的相关性与表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We have developed a new and effective methodology to correlate optical and AFM images of single Ag nanoparticles (NPs), allowing us to study 3D-morphological dependent localized surface plasmon resonance (LSPR) spectra of individual Ag NPs. We fabricated arrays of distinctive microwindows on glass coverslips using photo-lithography method, and created well-isolated individual Ag NPs with a wide variety of shapes and morphologies on the glass coverslips using a modified nanosphere lithography method (NSL). Using distinctive geometries of microwindows, we located individual Ag NPs of interest in their optical and AFM images, enabling us to correlate and characterize the LSPR spectra and 3D morphologies of the same single NPs using dark-field optical microscopy and spectroscopy (DFOMS) and AFM, respectively. We found that LSPR spectra of single Ag NPs, with nearly equal volume [(8.6 ± 0.4) × 103 nm3], cross-section [(2.2 ± 0.2) × 102 nm3], and height (39.6 ± 3.6 nm), highly depend on their shapes, showing the red shift of peak wavelength to 629 nm (quasi trapezoidal cylindrical NP) from that of 506 nm (quasi circular cylindrical NP). LSPR spectra of single Ag NPs simulated using discrete dipole approximation (DDA) agree well with those measured experimentally when their shapes and morphologies can be accuractely described in both methods, but differ when they are not. Furthermore, we found location-dependent LSPR spectra on and around a single NP, offering a unique opportunity to characterize multi-mode plasmonic NPs at nanometer resolution for better understanding their plasmonic optical properties and for rational design of single NP optics.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号