首页> 美国卫生研究院文献>other >Structural Signatures of Enzyme Binding Pockets from Order-Independent Surface Alignment: A Study of Metalloendopeptidase and NAD Binding Proteins
【2h】

Structural Signatures of Enzyme Binding Pockets from Order-Independent Surface Alignment: A Study of Metalloendopeptidase and NAD Binding Proteins

机译:订单无依赖性表面排列酶结合口袋的结构签名:金属胚性酶和NAD结合蛋白的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Detecting similarities between local binding surfaces can facilitate identification of enzyme binding sites, prediction of enzyme functions, as well as aid in our understanding of enzyme mechanisms. A challenging task is to construct a template of local surface characteristics for a specific enzyme function or binding activity, as the size and shape of binding surfaces of a biochemical function often varies. Here we introduce the concept of signature binding pockets, which captures information about preserved and varied atomic positions at multi-resolution levels. For proteins with complex enzyme binding and activity, multiple signatures arise naturally in our model, which form a signature basis set that characterize this class of proteins. Both signatures and signature basis set can be automatically constructed by a method called Solar (Signature Of Local Active Regions). This method is based on a sequence order independent alignment of computed binding surface pockets. Solar also provides a structure based multiple sequence fragment alignment (MSFA) to facilitate interpretation of computed signatures. For studying a family of evolutionary related proteins, we show that for metzincin metalloendopeptidase, which has a broad spectrum of substrate binding, signature and basis set pockets can be used to discriminate metzincins from other enzymes, to predict the subclass of enzyme functions, and to identify the specific binding surfaces. For studying unrelated proteins which have evolved to bind to the same NAD co-factor, signatures of NAD binding pockets can be constructed and can be used to predict NAD binding proteins and to locate NAD binding pockets. By measuring preservation ratio and location variation, our method can identify residues and atoms important for binding affinity and specificity. In both cases, we show that signatures and signature basis set reveal significant biological insight.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号