首页> 美国卫生研究院文献>other >Differential pharmacokinetic analysis of in vivo erythropoietin receptor interaction with erythropoietin and continuous erythropoietin receptor activator in sheep
【2h】

Differential pharmacokinetic analysis of in vivo erythropoietin receptor interaction with erythropoietin and continuous erythropoietin receptor activator in sheep

机译:绵羊中促红细胞生成素和连续促红细胞生成素受体活化剂的体内促红细胞生成素受体相互作用的差分药代动力学分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The two erythropoiesis stimulating agents (ESAs), short acting recombinant human erythropoietin (EPO) and long acting continuous erythropoietin receptor activator (CERA), have been hypothesized to share an in vivo elimination pathway that involves binding to erythropoietin receptor (EPOR) and subsequent internalization. A physiologically based recirculation model and a pharmacokinetic tracer interaction methodology (TIM) were used to compare the in vivo interaction kinetics with EPOR between the two ESAs in adult sheep. Animals treated with EPO experienced a greater EPOR up-regulation than those treated with CERA, as evidenced by an eightfold-higher initial EPOR normalized production rate constant, ksyn/R0, versus a twofold-larger EPOR degradation rate constant, kdeg. In agreement with in vitro studies, EPO had a lower in vivo equilibrium dissociation constant from EPOR than CERA (KD = 6 versus 88.4 pmol/l, respectively, p < 0.01). The internalization and/or degradation of the EPO–EPOR complex was faster than that of the CERA–EPOR complex (kint = 24 versus 2.41 h−1, respectively, p < 0.01). The adopted model enables a mechanism-based explanation for CERA’s slower elimination and greater erythropoietic activity in vivo. As predicted by the model, the slower elimination of CERA is due to: (1) less EPOR up-regulation induced by CERA administration; (2) slower binding of CERA to EPOR; and (3) reduced internalization and/or degradation rate of surface-bound CERA. Slower CERA/EPOR complex elimination explains the greater in vivo erythropoiesis reported for CERA, despite its lower affinity to EPOR. A sensitivity analysis showed that the model parameters were reliably estimated using the TIM methodology.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号