首页> 美国卫生研究院文献>other >Second Contact Shell Mutation Diminishes Streptavidin-Biotin Binding Affinity Through Transmitted Effects on Equilibrium Dynamics
【2h】

Second Contact Shell Mutation Diminishes Streptavidin-Biotin Binding Affinity Through Transmitted Effects on Equilibrium Dynamics

机译:第二接触壳牌突变减少链霉亲和素结合亲和力通过对动态的平衡传输的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We report a point mutation in the second contact shell of the high-affinity streptavidin-biotin complex that appears to reduce binding affinity through transmitted effects on equilibrium dynamics. The Y54F streptavidin mutation causes a 75-fold loss of binding affinity with 73-fold faster dissociation, a large loss of binding enthalpy (ΔΔH, 3.4 kcal/mol at 37 °C) and a small gain in binding entropy (TΔΔS, 0.7 kcal/mol). The removed Y54 hydroxyl is replaced by a water molecule in the bound structure, but there are no observable changes in structure in the first contact shell and no additional changes surrounding the mutation. Molecular dynamics simulations reveal a large increase in atomic fluctuations for W79, a key biotin contact residue, compared to the wild type complex. The increased W79 fluctuations are caused by loss of water-mediated hydrogen bonds between the Y54 hydroxyl group and peptide backbone atoms in and near W79. We propose that the increased fluctuations diminish the integrity of the W79-biotin interaction and represent a loosening of the “tryptophan collar” which is critical to the slow dissociation and high affinity of streptavidin-biotin binding. These results illustrate how changes in protein dynamics distal to the ligand binding pocket can have a profound impact on ligand binding, even when equilibrium structure is unperturbed.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号