首页> 美国卫生研究院文献>other >A Biphasic Multiscale Study of the Mechanical Microenvironment of Chondrocytes within Articular Cartilage under Unconfined Compression
【2h】

A Biphasic Multiscale Study of the Mechanical Microenvironment of Chondrocytes within Articular Cartilage under Unconfined Compression

机译:无侧限压迫下软骨内软骨细胞机械微环境的双相多尺度研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational analyses have been used to study the biomechanical microenvironment of the chondrocyte that cannot be assessed by in vitro experimental studies; yet all computational studies thus far have focused on the effect of zonal location (superficial, middle, and deep) on the mechanical microenvironment of chondrocytes. The aim of this paper was to study the effect of both zonal and radial locations on the biomechanical microenvironment of chondrocytes in inhomogeneous cartilage under unconfined stress relaxation. A biphasic multiscale approach was employed and nine chondrocytes in different locations were studied. Hyperelastic biphasic theory and depth-dependent aggregate modulus and permeability of articular cartilage were included in the models. It was found that both zonal and radial locations affected the biomechanical stresses and strains of the chondrocytes. Chondrocytes in the mid-radial location had increased volume during the early stage of the loading process. Maximum principal shear stress at the interface between the chondrocyte and the extracellular matrix (ECM) increased with depth, yet that at the ECM-pericellular matrix (PCM) interface had an inverse trend. Fluid pressure decreased with depth, while the fluid pressure difference between the top and bottom boundaries of the microscale model increased with depth. Regardless of location, fluid was exchanged between the chondrocyte, PCM, and ECM. These findings suggested that even under simple compressive loading conditions, the biomechanical microenvironment of the chondrocytes, PCM and ECM were spatially dependent. The current study provides new insight on chondrocyte biomechanics.
机译:计算分析已被用于研究软骨细胞的生物力学微环境,而该生物学环境无法通过体外实验研究进行评估。但是到目前为止,所有计算研究都集中在区域位置(表面,中间和深层)对软骨细胞机械微环境的影响上。本文的目的是研究在无限制的应力松弛下,区域和径向位置对软骨不均匀软骨细胞生物力学微环境的影响。采用了双相多尺度方法,并研究了不同位置的9个软骨细胞。该模型包括超弹性双相理论以及与深度相关的骨总模量和关节渗透性。已经发现,区域和径向位置都影响软骨细胞的生物力学应力和应变。在加载过程的早期,位于radi中部的软骨细胞体积增加。软骨细胞与细胞外基质(ECM)之间的界面处的最大主切应力随深度增加而增加,而ECM-细胞周围基质(PCM)界面处的最大主切应力却呈反趋势。流体压力随深度而减小,而微型模型的顶部和底部边界之间的流体压力差随深度而增大。无论位置如何,都在软骨细胞,PCM和ECM之间交换了液体。这些发现表明,即使在简单的压缩载荷条件下,软骨细胞,PCM和ECM的生物力学微环境在空间上也是依赖的。当前的研究为软骨细胞的生物力学提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号