首页> 美国卫生研究院文献>other >Analysis of Non-Typeable Haemophilous influenzae VapC1 Mutations Reveals Structural Features Required for Toxicity and Flexibility in the Active Site
【2h】

Analysis of Non-Typeable Haemophilous influenzae VapC1 Mutations Reveals Structural Features Required for Toxicity and Flexibility in the Active Site

机译:不可分类的嗜血性流感病毒VapC1突变的分析揭示了活性位点毒性和灵活性所需的结构特征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bacteria have evolved mechanisms that allow them to survive in the face of a variety of stresses including nutrient deprivation, antibiotic challenge and engulfment by predator cells. A switch to dormancy represents one strategy that reduces energy utilization and can render cells resistant to compounds that kill growing bacteria. These persister cells pose a problem during treatment of infections with antibiotics, and dormancy mechanisms may contribute to latent infections. Many bacteria encode toxin-antitoxin (TA) gene pairs that play an important role in dormancy and the formation of persisters. VapBC gene pairs comprise the largest of the Type II TA systems in bacteria and they produce a VapC ribonuclease toxin whose activity is inhibited by the VapB antitoxin. Despite the importance of VapBC TA pairs in dormancy and persister formation, little information exists on the structural features of VapC proteins required for their toxic function in vivo. Studies reported here identified 17 single mutations that disrupt the function of VapC1 from non-typeable H. influenzae in vivo. 3-D modeling suggests that side chains affected by many of these mutations sit near the active site of the toxin protein. Phylogenetic comparisons and secondary mutagenesis indicate that VapC1 toxicity requires an alternative active site motif found in many proteobacteria. Expression of the antitoxin VapB1 counteracts the activity of VapC1 mutants partially defective for toxicity, indicating that the antitoxin binds these mutant proteins in vivo. These findings identify critical chemical features required for the biological function of VapC toxins and PIN-domain proteins.
机译:细菌已经进化出机制,使它们能够在各种压力下生存,包括营养缺乏,抗生素攻击和被捕食者细胞吞噬。进入休眠状态代表了一种减少能量利用并使细胞对杀死正在生长的细菌的化合物具有抗性的策略。这些持久性细胞在用抗生素治疗感染期间构成问题,并且休眠机制可能导致潜在感染。许多细菌编码毒素-抗毒素(TA)基因对,它们在休眠和持久性物质形成中起重要作用。 VapBC基因对构成细菌中最大的II型TA系统,它们产生VapC核糖核酸酶毒素,其活性被VapB抗毒素抑制。尽管VapBC TA对在休眠和持久性形成中具有重要意义,但有关其体内毒性功能所需的VapC蛋白结构特征的信息很少。此处报道的研究确定了17种单一突变,这些突变会破坏体内来自非分型流感嗜血杆菌的VapC1的功能。 3-D建模表明受许多此类突变影响的侧链位于毒素蛋白的活性位点附近。系统发育比较和二次诱变表明,VapC1毒性需要在许多蛋白杆菌中发现的另一个活性位点基序。抗毒素VapB1的表达抵消了部分毒性不良的VapC1突变体的活性,表明该抗毒素在体内与这些突变蛋白结合。这些发现确定了VapC毒素和PIN结构域蛋白的生物学功能所需的关键化学特征。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号