首页> 美国卫生研究院文献>other >Connecting Free Energy Surfaces in Implicit and Explicit Solvent: an Efficient Method to Compute Conformational and Solvation Free Energies
【2h】

Connecting Free Energy Surfaces in Implicit and Explicit Solvent: an Efficient Method to Compute Conformational and Solvation Free Energies

机译:在隐式和显式溶剂中连接自由能表面:计算构象和溶剂化自由能的有效方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions and protein-ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ~3 kcal/mol at only ~8 % of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the explicit/implicit thermodynamic cycle.
机译:准确模拟溶剂对自由能表面的影响的能力对于理解许多生物物理过程至关重要,包括蛋白质折叠和错折叠,变构转变和蛋白质-配体结合。尽管在显式溶剂中的全原子模拟可以为溶液中的生物分子提供准确的模型,但是在包含多个由障碍物分隔的盆地的崎landscape景观中,缓慢的平衡阻碍了显式溶剂的模拟。在许多情况下,隐式溶剂模型可用于显着加快构象采样;但是,隐式溶剂模拟不能完全捕获分子溶剂的作用,这可能导致估计自由能的准确性下降。在这里,我们介绍了一种计算自由能变化的新方法,该方法保留了显式溶剂模拟的分子细节,同时还利用了隐式溶剂模拟的速度。在这种方法中,通过使用热力学循环避免了显性溶剂中缓慢的平衡,因为平衡时间过长,因此需要使用局部去耦方案将隐性溶剂中的自由能池与显性溶剂连接起来。我们通过计算模型系统丙氨酸二肽在水中的构象自由能差和溶剂化自由能来测试该方法。使用完全显式的溶剂路径计算出的显式溶剂中的盆地之间的自由能变化与使用隐式/显式热力学循环获得的相应自由能差相一致,在大约3kcal / mol的0.3 kcal / mol之内,仅为大约8%。计算成本。我们注意到,WHAM方法可用于进一步提高显式/隐式热力学循环的效率和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号