首页> 美国卫生研究院文献>other >Cross-Talk between Ionic and Nanoribbon Current Signals in Graphene Nanoribbon-Nanopore Sensors for Single Molecule Detection
【2h】

Cross-Talk between Ionic and Nanoribbon Current Signals in Graphene Nanoribbon-Nanopore Sensors for Single Molecule Detection

机译:石墨烯纳米带-纳米孔传感器中用于单分子检测的离子和纳米带电流信号之间的交叉讨论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanopores are now being used not only as an ionic current sensor but also as a means to localize molecules near alternative sensors with higher sensitivity and/or selectivity. One example is a solid-state nanopore embedded in a graphene nanoribbon (GNR) transistor. Such a device possesses the high conductivity needed for higher bandwidth measurements and, because of its single-atomic-layer thickness, could improve the spatial resolution of the measurement. Here we show two-channel measurements of ionic current through the nanopore during double-stranded DNA (dsDNA) translocation, along with the simultaneous response of the neighboring GNR due to changes in the surrounding electric potential. We observe cross-talk originating from capacitive coupling between the two measurement channels, resulting in a transient response in the GNR during DNA translocation; however, we do not observe a modulation in device conductivity via an electric field effect response, due to changes in local solution potential during DNA translocation. A field effect response would scale with GNR source-drain voltage (Vds), whereas the capacitive coupling does not scale with Vds. In order to take advantage of the high bandwidth potential of such sensors, the field effect response must be enhanced. We present potential field calculations to outline a phase diagram for detection within the device parameter space, charting a roadmap for future optimization of such devices.
机译:现在,纳米孔不仅被用作离子电流传感器,而且还被用作以更高的灵敏度和/或选择性将分子定位在替代传感器附近的手段。一个示例是嵌入在石墨烯纳米带(GNR)晶体管中的固态纳米孔。这种设备具有较高带宽测量所需的高电导率,并且由于其单原子层的厚度,可以提高测量的空间分辨率。在这里,我们显示了在双链DNA(dsDNA)移位过程中通过纳米孔的离子电流的两通道测量结果,以及由于周围电势的变化而引起的邻近GNR的同时响应。我们观察到来自两个测量通道之间的电容耦合的串扰,导致DNA移位期间GNR中的瞬态响应。然而,由于DNA转运过程中局部溶液电位的变化,我们没有观察到通过电场效应响应引起的设备电导率的调节。场效应响应将随GNR源漏电压(Vds)缩放,而电容耦合不会随Vds缩放。为了利用这种传感器的高带宽潜力,必须增强场效应响应。我们提出了潜在的场计算,以概述用于在设备参数空间内进行检测的相图,并绘制了用于此类设备未来优化的路线图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号